在自己的电脑上部署自己的AI模型,然后读取自己的数据库,买一个什么配置的电脑可以呢?
AI本地部署对计算机的要求取决于具体场景:
大模型训练/推理(如LLaMA、GPT、Stable Diffusion等)
实时性要求高(如视频分析、自动驾驶)
轻量级模型推理(如MobileNet、TinyLLAMA)
边缘设备部署
总结:
问的rag相关,基本都是简历上的内容。手撕编辑距离和空间复杂度优化。 问了hr挂的原因,说是基础不行,rag技术需要加深认识,确实也是这个原因
主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。
主要内容:数据量,硬件依赖,特色工程在本章中,我们将讨论机器和深度学习概念之间的主要区别。 数据量 机器学习使用不同数量的数据,主要用于少量数据。另一方面,如果数据量迅速增加,深度学习可以有效地工作。下图描绘了机器学习和深度学习在数据量方面的工作 - 硬件依赖 与传统的机器学习算法相反,深度学习算法设计为在很大程度上依赖于高端机器。深度学习算法执行大量矩阵乘法运算,这需要巨大的硬件支持。 特色工程 特征工程是将领域知识放入指定特征的
一小时,拷打transformer 你怎么理解AIGC? 讲一下transformer transformer和cnn的区别 transformer中embeding怎么做的 位置编码你了解哪些形式 三角函数位置编码有哪些好处,旋转位置编码呢 position embeding 和input怎么融合的 多头注意力相比单头优势,encode的时候多头会做融合吗?还是什么时候做融合? 拆成多少个头有什
本文向大家介绍Python编程深度学习计算库之numpy,包括了Python编程深度学习计算库之numpy的使用技巧和注意事项,需要的朋友参考一下 NumPy是python下的计算库,被非常广泛地应用,尤其是近来的深度学习的推广。在这篇文章中,将会介绍使用numpy进行一些最为基础的计算。 NumPy vs SciPy NumPy和SciPy都可以进行运算,主要区别如下 最近比较热门的深度学习,比
Dive into cheap deep learning,专注于让深度学习更划算更便宜,From your IQ, your devices, and your resource,从学习智力上、装备上、资源上。
一面 深挖实习项目,问了算法的idea产生以及部署落地后的效果,最后问进一步改进方法 二面 第一部分考察对NeRF整个领域的了解,介绍了十多个下游领域方向代表的论文并说明优缺点;第二部分针对NeRF问我关注什么样的改进以及重点看哪方面的创新点,之后对NeRF+SDF的表面表达原理细节以及公式提问,接着问实习项目的创新点;第三部分针对他们业务中存在的问题问我有哪些方法或者建议;最后一部分简单过了鼠鼠
主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推