我不知道是怎么回事,我的java客户机消费者用@KafkaListener注释后没有收到任何消息。当我通过命令行创建消费者时,它可以工作。同样,Producer也能按预期工作(同样在java中)。有人能帮我理解这种行为吗?
application.yml
kafka:
bootstrap-servers: localhost:9092
topic: my-topic
生产者配置:
@Configuration
public class KafkaProducerConfig {
@Value("${kafka.bootstrap-servers}")
private String bootstrapServers;
@Bean
public ProducerFactory<String, String> producerFactory(){
Map<String, Object> configProps = new HashMap<>();
configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return new DefaultKafkaProducerFactory<>(configProps);
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate(){
return new KafkaTemplate<>(producerFactory());
}
}
消费者配置:
@EnableKafka
@Configuration
class KafkaConsumerConfig {
@Value("${kafka.bootstrap-servers}")
String bootstrapServers;
@Bean
public ConsumerFactory<String, String> consumerFactory(){
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
return new DefaultKafkaConsumerFactory<>(props);
}
@Bean
public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory(){
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;
}
}
制作人
@Service
class Producer {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@Value("${kafka.topic}")
String kafkaTopic;
public void send(String payload){
System.out.println("sending " + payload + " to " + kafkaTopic);
kafkaTemplate.send(kafkaTopic, payload);
}
}
@Service
public class Consumer {
@KafkaListener(topics = "${kafka.topic}")
public void receive(String payload){
System.out.println(payload + " aaaaaaaaaaaaaaaaaaaaaaaaaaa");
}
}
Spring控制器:
@RestController
@RequestMapping(value = "/kafka")
class WebRestController {
@Autowired
Producer producer;
@GetMapping(value = "/producer")
public String producer(String data){
producer.send(data);
return "Done";
}
}
这是我的控制台输出,正如您所看到的,它发送一条消息,但该方法不接收任何内容。如果我没有使用spring kafka,它就可以工作,只使用纯kafka api。当我在命令行中绑定消费者时,它也可以工作——我看到java代码生成器发送的消息。
2018-04-03 13:43:41.688 INFO 8068 --- [ main] o.a.k.clients.consumer.ConsumerConfig : ConsumerConfig values:
auto.commit.interval.ms = 5000
auto.offset.reset = earliest
bootstrap.servers = [localhost:9092]
check.crcs = true
client.id =
connections.max.idle.ms = 540000
enable.auto.commit = true
exclude.internal.topics = true
fetch.max.bytes = 52428800
fetch.max.wait.ms = 500
fetch.min.bytes = 1
group.id =
heartbeat.interval.ms = 3000
interceptor.classes = null
internal.leave.group.on.close = true
isolation.level = read_uncommitted
key.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
max.partition.fetch.bytes = 1048576
max.poll.interval.ms = 300000
max.poll.records = 500
metadata.max.age.ms = 300000
metric.reporters = []
metrics.num.samples = 2
metrics.recording.level = INFO
metrics.sample.window.ms = 30000
partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
receive.buffer.bytes = 65536
reconnect.backoff.max.ms = 1000
reconnect.backoff.ms = 50
request.timeout.ms = 305000
retry.backoff.ms = 100
sasl.jaas.config = null
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.min.time.before.relogin = 60000
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
sasl.kerberos.ticket.renew.window.factor = 0.8
sasl.mechanism = GSSAPI
security.protocol = PLAINTEXT
send.buffer.bytes = 131072
session.timeout.ms = 10000
ssl.cipher.suites = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.endpoint.identification.algorithm = null
ssl.key.password = null
ssl.keymanager.algorithm = SunX509
ssl.keystore.location = null
ssl.keystore.password = null
ssl.keystore.type = JKS
ssl.protocol = TLS
ssl.provider = null
ssl.secure.random.implementation = null
ssl.trustmanager.algorithm = PKIX
ssl.truststore.location = null
ssl.truststore.password = null
ssl.truststore.type = JKS
value.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
2018-04-03 13:43:41.743 INFO 8068 --- [ main] o.a.kafka.common.utils.AppInfoParser : Kafka version : 0.11.0.0
2018-04-03 13:43:41.743 INFO 8068 --- [ main] o.a.kafka.common.utils.AppInfoParser : Kafka commitId : cb8625948210849f
2018-04-03 13:43:41.774 INFO 8068 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port(s): 8080 (http) with context path ''
2018-04-03 13:43:41.777 INFO 8068 --- [ main] kafka.KafkaExample : Started KafkaExample in 3.653 seconds (JVM running for 4.195)
2018-04-03 13:43:47.245 INFO 8068 --- [nio-8080-exec-3] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring FrameworkServlet 'dispatcherServlet'
2018-04-03 13:43:47.245 INFO 8068 --- [nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : FrameworkServlet 'dispatcherServlet': initialization started
2018-04-03 13:43:47.264 INFO 8068 --- [nio-8080-exec-3] o.s.web.servlet.DispatcherServlet : FrameworkServlet 'dispatcherServlet': initialization completed in 19 ms
sending Hello to my-topic
2018-04-03 13:43:47.300 INFO 8068 --- [nio-8080-exec-3] o.a.k.clients.producer.ProducerConfig : ProducerConfig values:
acks = 1
batch.size = 16384
bootstrap.servers = [localhost:9092]
buffer.memory = 33554432
client.id =
compression.type = none
connections.max.idle.ms = 540000
enable.idempotence = false
interceptor.classes = null
key.serializer = class org.apache.kafka.common.serialization.StringSerializer
linger.ms = 0
max.block.ms = 60000
max.in.flight.requests.per.connection = 5
max.request.size = 1048576
metadata.max.age.ms = 300000
metric.reporters = []
metrics.num.samples = 2
metrics.recording.level = INFO
metrics.sample.window.ms = 30000
partitioner.class = class org.apache.kafka.clients.producer.internals.DefaultPartitioner
receive.buffer.bytes = 32768
reconnect.backoff.max.ms = 1000
reconnect.backoff.ms = 50
request.timeout.ms = 30000
retries = 0
retry.backoff.ms = 100
sasl.jaas.config = null
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.min.time.before.relogin = 60000
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
sasl.kerberos.ticket.renew.window.factor = 0.8
sasl.mechanism = GSSAPI
security.protocol = PLAINTEXT
send.buffer.bytes = 131072
ssl.cipher.suites = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.endpoint.identification.algorithm = null
ssl.key.password = null
ssl.keymanager.algorithm = SunX509
ssl.keystore.location = null
ssl.keystore.password = null
ssl.keystore.type = JKS
ssl.protocol = TLS
ssl.provider = null
ssl.secure.random.implementation = null
ssl.trustmanager.algorithm = PKIX
ssl.truststore.location = null
ssl.truststore.password = null
ssl.truststore.type = JKS
transaction.timeout.ms = 60000
transactional.id = null
value.serializer = class org.apache.kafka.common.serialization.StringSerializer
2018-04-03 13:43:47.315 INFO 8068 --- [nio-8080-exec-3] o.a.kafka.common.utils.AppInfoParser : Kafka version : 0.11.0.0
2018-04-03 13:43:47.315 INFO 8068 --- [nio-8080-exec-3] o.a.kafka.common.utils.AppInfoParser : Kafka commitId : cb8625948210849f
编辑:
kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 13 --topic my-topic
这是我的服务器。属性文件:
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0
############################# Socket Server Settings #############################
# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
# FORMAT:
# listeners = listener_name://host_name:port
# EXAMPLE:
# listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092
# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured. Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092
# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3
# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600
############################# Log Basics #############################
# A comma seperated list of directories under which to store log files
log.dirs=/tmp/kafka-logs
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1
############################# Internal Topic Settings #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168
# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:2181
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000
############################# Group Coordinator Settings #############################
# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
组。id=
您需要一个组。消费者的id
。
在消费者工厂属性中设置它。
顺便说一句,当使用引导时,您不需要消费者工厂bean或容器工厂bean,您可以为此使用引导属性。
可以使用属性/yaml中的logging.level.启用日志记录。
我是Kafka的新手。我在网上读了很多关于Kafka制作人和Kafka消费者的说明。我成功地实现了前者,它可以向Kafka集群发送消息。然而,我没有完成后一个。请帮我解决这个问题。我看到我的问题像StackOverflow上的一些帖子,但我想更清楚地描述一下。我在虚拟盒子的Ubuntu服务器上运行Kafka和Zookeeper。使用1个Kafka集群和1个Zookeeper集群的最简单配置(几乎是
Kafka消费者不接收在消费者开始之前产生的消息。 ConsumerRecords始终为空 虽然,如果我启动我的消费者比生产者比它接收消息。(Kafka-客户端版本2.4.1)
我正在使用Spring Kafka consumer,它从主题中获取消息并将其保存到数据库中。如果满足故障条件,例如db不可用,kafka消费者库是否提供重试机制?如果是,是否有方法设置不同的重试间隔,如第1次重试应在5分钟后进行,第2次重试应在30分钟后进行,第3次重试应在1小时后进行等。
我是Kafka的新手,运行一个简单的Kafka消费者/生产者的例子,就像在Kafka消费者和KafkaProducer上给出的那样。当我从终端运行消费者时,消费者正在接收消息,但我不能使用Java代码监听。我也在StackoverFlow上搜索了类似的问题(链接: Link1,Link2),并尝试了解决方案,但似乎没有什么对我有用。kafka版本:和相应的maven依赖在pom中使用。 Java生
我可以在命令行上针对Kafka位置安装发送和接收消息。我也可以通过Java代码发送消息。这些消息显示在Kafka命令提示符中。我还有一个Kafka消费者的Java代码。代码昨天收到了消息。但是今天早上没有收到任何消息。代码没有更改。我想知道属性配置是否不太正确。这是我的配置: 制片人: 生产记录设置为 消费者: 对于Java代码: 少了什么?
在使用Spring Kafka Consumer时,我有时会收到以下错误消息。如代码片段所示,我至少实现了一次语义 1)我的疑问是,我是否错过了来自消费者的任何信息? 2) 我需要处理这个错误吗。由于 org.apache.kafka.clients.consumer.提交失败异常:无法完成偏移提交,因为消费者不是自动分区分配的活动组的一部分;消费者很可能被踢出组。 我的SpringKafka消费