下面详细介绍了我在解决优化问题时遇到的问题的简化版本。
目标是使通过卡车运送水的组织的成本函数最小化,并使用该方程生成一个使成本最小化的卡车运送时间表。
该组织全年向约10000个家用水箱供水。
这些油箱的最大容量为300加仑,最小期望限值为100加仑,也就是说,在油箱低于100加仑之前,应将油箱加满300加仑。
例如,如果储罐在第2周为115加仑,预计在第3周使用20加仑,则需要在第3周重新加注。
费用包括:
>
卡车的周成本。一辆卡车每周的费用是1000美元。因此,如果一周内交付200次,成本为3000美元。如果交付201次,成本将大幅飙升至4010美元(201*10 1000*2)。
用水量因家庭和周而异。用水量峰值出现在夏季。如果我们盲目地遵循规则,在达到100加仑最低限量之前加油,那么如果交付分散到夏季的“肩膀”,卡车的峰值数量很可能会高于需求。
我已经为每个家庭每周的用水量做了估计。此外,我还像家庭一样分组,以减少最佳化问题的规模(~10k家庭减少到8组)。
重申目标:这个优化器的输出应该是:对于每个家庭群体,在一年中的52周中的每一周,交付与否。
简化数据(即8组12周):
df.usage <- structure(list(reduction.group = c(1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8), week = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12), water_usage = c(46, 50, 42, 47, 43, 39,
38, 32, 42, 36, 42, 30, 46, 50, 42, 47, 43, 39, 38, 32, 42, 36,
42, 30, 46, 50, 43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 46, 50,
43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 29, 32, 27, 30, 27, 25,
24, 20, 26, 23, 27, 19, 29, 32, 27, 30, 27, 25, 24, 20, 26, 23,
27, 19, 29, 32, 27, 30, 28, 25, 25, 21, 27, 23, 27, 19, 29, 32,
27, 30, 28, 25, 25, 21, 27, 23, 27, 20), tank.level.start = c(115,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 165, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 200, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 215, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 225, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 230,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 235, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 240, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA)), row.names = c(NA, 96L), class = "data.frame")
油箱液位补充规则
以下是一组嵌套的循环,用于通过“重新加注”逻辑确定随时间变化的储罐液位:
library(dplyr)
reduction.groups <- unique(df.usage$reduction.group)
df.after.refill.logic <- list()
for (i in reduction.groups) {
temp <- df.usage %>% filter(reduction.group == i)
temp$refilled <- 0
temp$level <- temp$tank.level.start
n <- nrow(temp)
if (n > 1) for (j in 2:n) {
temp$level[j] <- ( temp$level[j-1] - temp$water_usage[j] )
if(temp$level[j] < 100) {
temp$level[j] <- 300
temp$refilled[j] <- 1
}
}
df.after.refill.logic <- bind_rows(df.after.refill.logic, temp)
}
决策变量
每年每周向每个组交付与否(二进制)
约束条件
无部分卡车:卡车数量必须为整数
卡车容量:卡车交付量/周
油箱不能低于100加仑:液位
传递必须为二进制
常数
1600 # truck_weekly_costs
10 # cost_per_delivery
200 # weekly_delivery_capacity_per_truck
成本函数示例
weekly_cost_function <- function(i){
cost <- (ceiling(sum(i)/200)) * 1600 + (sum(i) * 10)
cost
}
**example cost for one week with i = 199 deliveries:**
weekly_cost_function(i = 199)
[1] 3590
尝试使用OMPR对问题进行建模
下面是使用OMPR包创建的模型的开头(尽管可以使用其他包):
我对如何使用上面的数据进行设置感到困惑。三个明显的问题:
num_groups <- length(unique(df.usage$reduction.group))
num_weeks <- length(unique(df.usage$week))
MIPModel() %>%
add_variable(x[i,w], # create decision variable: deliver or not by...
i = 1:num_groups, # group,
w = 1:num_weeks, # in week.
type = "integer", # Integers only
lb = 0, ub = 1) %>% # between 0 and 1, inclusive
set_objective(sum_expr( x[i,w]/200 * 1600 + x[i,w] * 10,
i = 1:num_groups,
w = 1:num_weeks),
sense = "min") %>%
# add constraint to achieve ceiling(x[i,w]/200), or should this be in the set_objective call?
add_constraint(???) %>%
solve_model(with_ROI("glpk"))
所需输出
以下是示例head()
输出的样子:
reduction.group week water.usage refill level
1 1 46 0 115
1 2 50 1 300
1 3 42 0 258
1 4 47 0 211
1 5 43 0 168
1 6 39 0 129
重要的是,refill
值将是最小化代价函数并保持级别
高于100的值。
有了上限函数,对于爬山优化器来说,这似乎是一个难题。我认为遗传算法更合适。每周每个房子的交付与否矩阵构成了一个很好的基因组。
library(dplyr)
# Original given sample input data.
df.usage <- structure(list(reduction.group = c(1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8), week = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12), water_usage = c(46, 50, 42, 47, 43, 39,
38, 32, 42, 36, 42, 30, 46, 50, 42, 47, 43, 39, 38, 32, 42, 36,
42, 30, 46, 50, 43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 46, 50,
43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 29, 32, 27, 30, 27, 25,
24, 20, 26, 23, 27, 19, 29, 32, 27, 30, 27, 25, 24, 20, 26, 23,
27, 19, 29, 32, 27, 30, 28, 25, 25, 21, 27, 23, 27, 19, 29, 32,
27, 30, 28, 25, 25, 21, 27, 23, 27, 20), tank.level.start = c(115,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 165, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 200, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 215, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 225, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 230,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 235, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 240, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA)), row.names = c(NA, 96L), class = "data.frame")
# Orginal given delivery cost function.
weekly_cost_function <- function(i){
cost <- (ceiling(sum(i)/200)) * 1600 + (sum(i) * 10)
cost
}
# Calculate the list of houses (reduction.groups) and number of delivery weeks (weeks).
reduction.groups <- unique(df.usage$reduction.group)
temp <- df.usage %>% filter(reduction.group == 1)
weeks <- nrow(temp)
# The genome consists of a matrix representing deliver-or-not to each house each week.
create_random_delivery_schedule <- function(number_of_houses, number_of_weeks, prob = NULL) {
matrix(sample(c(0, 1), number_of_houses * number_of_weeks, replace = TRUE, prob = prob), number_of_houses)
}
# Generate a population of random genes.
population_size <- 100
schedules <- replicate(population_size, create_random_delivery_schedule(length(reduction.groups), weeks), simplify = FALSE)
# Calculate fitness of an individual.
fitness <- function(schedule) {
# Fitness is related to delivery cost.
delivery_cost <- sum(apply(schedule, 2, weekly_cost_function))
# If the schedule allows a tank level to drop below 100, apply a fitness penalty.
# Don't make the fitness penalty too large.
# If the fitness penalty is large enough to be catastrophic (essentially zero children)
# then solutions that are close to optimal will also be likely to generate children
# who fall off the catastropy cliff so there will be a selective pressure away from
# close to optimal solutions.
# However, if your optimizer generates a lot of infeasible solutions raise the penalty.
for (i in reduction.groups) {
temp <- df.usage %>% filter(reduction.group == i)
temp$level <- temp$tank.level.start
if (weeks > 1) for (j in 2:weeks) {
if (1 == schedule[i,j]) {
temp$level[j] <- 300
} else {
temp$level[j] <- ( temp$level[j-1] - temp$water_usage[j] )
if (100 > temp$level[j]) {
# Fitness penalty.
delivery_cost <- delivery_cost + 10 * (100 - temp$level[j])
}
}
}
}
# Return one over delivery cost so that lower cost is higher fitness.
1 / delivery_cost
}
# Generate a new schedule by combining two parents chosen randomly weighted by fitness.
make_baby <- function(population_fitness) {
# Choose some parents.
parents <- sample(length(schedules), 2, prob = population_fitness)
# Get DNA from mommy.
baby <- schedules[[parents[1]]]
# Figure out what part of the DNA to get from daddy.
house_range <- sort(sample(length(reduction.groups), 2))
week_range <- sort(sample(weeks, 2))
# Get DNA from daddy.
baby[house_range[1]:house_range[2],week_range[1]:week_range[2]] <- schedules[[parents[2]]][house_range[1]:house_range[2],week_range[1]:week_range[2]]
# Mutate, 1% chance of flipping each bit.
changes <- create_random_delivery_schedule(length(reduction.groups), weeks, c(0.99, 0.01))
baby <- apply(xor(baby, changes), c(1, 2), as.integer)
}
lowest_cost <<- Inf
# Loop creating and evaluating generations.
for (ii in 1:100) {
population_fitness <- lapply(schedules, fitness)
lowest_cost_this_generation <- 1 / max(unlist(population_fitness))
print(sprintf("lowest cost = %f", lowest_cost_this_generation))
if (lowest_cost_this_generation < lowest_cost) {
lowest_cost <<- lowest_cost_this_generation
best_baby <<- schedules[[which.max(unlist(population_fitness))]]
}
schedules <<- replicate(population_size, make_baby(population_fitness), simplify = FALSE)
}
上限函数是一个困难的非线性函数(不可微、不连续),应该不惜一切代价避免。然而,它可以很容易地用一般整数变量建模。对于非负变量<代码>x
y = ceiling(x)
作为
x <= y <= x+1
y integer
这是完全线性的,在OMPR(或任何其他LP/MIP工具)中实现起来都很简单。
详细说明。此公式允许模型在假设整数值的特殊情况下选择y=x或y=x 1。如果你想对这种情况挑剔,你可以:
x+0.0001 <= y <= x+1
y integer
我不会为此担心的。
- r - read : rt_device_ops read_index : rt_ringbuffer read_mirror : rt_ringbuffer reader_queue : rt_pipe_device readers : rt_pipe_device recv_buf : rt_spi_message ref_count : rt_device remaining_tic
这里列出了所有文档化的结构体和联合体的成员变量,并附带结构或联合所属的文件: - r - read : rt_device_ops read_index : rt_ringbuffer read_mirror : rt_ringbuffer reader_queue : rt_pipe_device readers : rt_pipe_device recv_buf : rt_spi_messag
问题内容: 你会怎么做? 或这个 : 最重要的是,我想知道何时在本地变量中存储值更有效,何时进行函数调用更好。 问题答案: 更具可读性更有效。临时表达式和局部变量需要相同的空间,从CPU / JVM的角度看,它们并没有太大区别。JVM将在优化/内嵌方面做得更好。 但是,如果方法调用很昂贵,则将其 缓存 在局部变量中。如果这只是一个简单的方法,无论如何都会内联。你的具体情况也恕我直言,局部变量 是
本文向大家介绍如何基于R数据帧中其他变量的条件创建带有二进制变量的列?,包括了如何基于R数据帧中其他变量的条件创建带有二进制变量的列?的使用技巧和注意事项,需要的朋友参考一下 有时我们需要创建额外的变量以添加有关当前数据的更多信息,因为它可以增加值。这在我们进行特征工程时特别有用。如果我们了解可能影响响应的某些内容,那么我们更愿意将其用作数据中的变量,因此我们将其与已有的数据结合起来。例如,创建另
我需要写一个函数,将二进制分数转换成十进制分数,例如 我所做的:我在R包中搜索相关函数: 我在SOF搜索,发现以下内容: 0.001是: 所以,像内积的总和似乎完成了这个问题,我不知道如何在一般情况下做到这一点。 javascript案例: 如何将二进制分数转换为十进制分数?如何将二进制分数转换为十进制lisp大小写: 将分数从十进制转换为二进制
Scala允许您指示可以重复函数的最后一个参数。 这允许客户端将可变长度参数列表传递给函数。 这里,print字符串函数中的args类型(声明为“String *”类型)实际上是Array [String]。 试试下面的程序,这是一个用参数显示函数的简单例子。 例子 (Example) object Demo { def main(args: Array[String]) { p