我试图在Windows 8.1上运行Apache Spark调用Spark shell命令时,得到以下堆栈:
C:\spark\spark-2.3.0-bin-hadoop2.7\bin>"C:\new\spark\spark-2.3.0-bin-hadoop2.7\bin\spark-submit2.cmd" --class org.apache
.spark.repl.Main --name "Spark shell"
2018-04-17 20:30:21 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-
java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
2018-04-17 20:30:33 ERROR SparkContext:91 - Error initializing SparkContext.
org.apache.spark.SparkException: Invalid Spark URL: spark://HeartbeatReceiver@Silierin_Y510P:4391
at org.apache.spark.rpc.RpcEndpointAddress$.apply(RpcEndpointAddress.scala:66)
at org.apache.spark.rpc.netty.NettyRpcEnv.asyncSetupEndpointRefByURI(NettyRpcEnv.scala:134)
at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:101)
at org.apache.spark.rpc.RpcEnv.setupEndpointRef(RpcEnv.scala:109)
at org.apache.spark.util.RpcUtils$.makeDriverRef(RpcUtils.scala:32)
at org.apache.spark.executor.Executor.<init>(Executor.scala:155)
at org.apache.spark.scheduler.local.LocalEndpoint.<init>(LocalSchedulerBackend.scala:59)
at org.apache.spark.scheduler.local.LocalSchedulerBackend.start(LocalSchedulerBackend.scala:126)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2486)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:930)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:921)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:921)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:43)
at $line3.$read.<init>(<console>:45)
at $line3.$read$.<init>(<console>:49)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.a
pply(SparkILoop.scala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.a
pply(SparkILoop.scala:79)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SparkILoop.s
cala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79
)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79
)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:78)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:77)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:110)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:76)
at org.apache.spark.repl.Main$.main(Main.scala:56)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:879)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:197)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:227)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:136)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
2018-04-17 20:30:33 ERROR Utils:91 - Uncaught exception in thread main
java.lang.NullPointerException
at org.apache.spark.scheduler.local.LocalSchedulerBackend.org$apache$spark$scheduler$local$LocalSchedulerBackend
$$stop(LocalSchedulerBackend.scala:159)
at org.apache.spark.scheduler.local.LocalSchedulerBackend.stop(LocalSchedulerBackend.scala:137)
at org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:508)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1752)
at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1924)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1923)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:578)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2486)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:930)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:921)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:921)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:43)
at $line3.$read.<init>(<console>:45)
at $line3.$read$.<init>(<console>:49)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.a
pply(SparkILoop.scala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.a
pply(SparkILoop.scala:79)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SparkILoop.s
cala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79
)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79
)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:78)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:77)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:110)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:76)
at org.apache.spark.repl.Main$.main(Main.scala:56)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:879)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:197)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:227)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:136)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
2018-04-17 20:30:33 WARN MetricsSystem:66 - Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Invalid Spark URL: spark://HeartbeatReceiver@Silierin_Y510P:4391
at org.apache.spark.rpc.RpcEndpointAddress$.apply(RpcEndpointAddress.scala:66)
at org.apache.spark.rpc.netty.NettyRpcEnv.asyncSetupEndpointRefByURI(NettyRpcEnv.scala:134)
at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:101)
at org.apache.spark.rpc.RpcEnv.setupEndpointRef(RpcEnv.scala:109)
at org.apache.spark.util.RpcUtils$.makeDriverRef(RpcUtils.scala:32)
at org.apache.spark.executor.Executor.<init>(Executor.scala:155)
at org.apache.spark.scheduler.local.LocalEndpoint.<init>(LocalSchedulerBackend.scala:59)
at org.apache.spark.scheduler.local.LocalSchedulerBackend.start(LocalSchedulerBackend.scala:126)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2486)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:930)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:921)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:921)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
... 55 elided
<console>:14: error: not found: value spark
import spark.implicits._
^
<console>:14: error: not found: value spark
import spark.sql
^
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.3.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_162)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
系统变量配置如下:
HADOOP\u主页:
c: \ hadoop
JAVA_HOME:
C: \Java\jdk1.8.0\u 162
SCALA_HOME:
C: \斯卡拉
SPARK\u主页:
C: \ spark\spark-2.3.0-bin-hadoop2.7
路径:
%JAVA\u主页%\bin;%SCALA\u主页%\bin;%HADOOP\u主页%\bin;%SPARK\u HOME%\bin;
Spark从这里下载:https://spark.apache.org/downloads.html
Winutils(x64)在c:\hadoop\bin\中从http://www.eaiesb.com/blogs/?tag=setup-spark-on-windows下载
创建目录C:\tmp\html" target="_blank">hive后运行以下命令
C: \ hadoop\bin\winutils。exe chmod 777 C:\tmp\hive
Java版本:
java版本“1.8.0\u 162”java(TM)SE运行时环境(build 1.8.0\u 162-b12)java HotSpot(TM)64位服务器VM(build 25.162-b12,混合模式)
scala版本:
Scala code runner版本2.12.5——版权所有2002-2018,LAMP/EPFL和Lightbend,股份有限公司。
我第一次运行Spark,所以可能跳过了一些配置步骤?请帮忙。
SparkConfig.set("spark.driver.host","localhost")解决了我的问题
主机名似乎有下划线,出现此问题。https://jira.apache.org/jira/browse/SPARK-24192
我有同样的问题,但它是通过设置SPARK_LOCAL_HOSTNAME=localhost解决的
我似乎找不到是什么引起的:/
我一直在使用Spark2.0.1,但试图通过将tar文件下载到我的本地并更改路径来升级到更新的版本,即2.1.1。 然而,现在当我尝试运行任何程序时,它在初始化SparkContext时都失败了。即。
我正在运行一个简单的代码来在hdfs上创建一个文件,并向其写入内容,然后关闭该文件。我可以在本地模式和纱线客户端模式下运行此代码。但是,当我用yarn-cluster模式运行相同的代码时,我在初始化sparkcontext时会遇到
我试图在Python中初始化火花上下文变量。 但我得到了以下错误: py4j。协议Py4JJavaError:调用None时出错。组织。阿帕奇。火花应用程序编程接口。JAVAJavaSparkContext.:JAVAlang.NoClassDefFoundError:无法初始化类组织。阿帕奇。火花内部的配置。组织上的包$ 。阿帕奇。火花斯帕克孔夫。在组织上验证设置(SparkConf.scala
Spark 编程的第一步是需要创建一个 SparkContext 对象,用来告诉 Spark 如何访问集群。在创建 SparkContext 之前,你需要构建一个 SparkConf 对象, SparkConf 对象包含了一些你应用程序的信息。 val conf = new SparkConf().setAppName(appName).setMaster(master) new SparkCon
我有我的文件下面: 我也有例子。: 出于某种原因,当我做在我的根目录(不是)我得到错误: 有人能给我解释一下这个错误中的问题吗?这是因为我的依赖项没有正确安装,还是因为其他原因?