T(n)=O(1)+O(nlogn)=O(nlogn)
但我不确定。有人能帮帮我吗。
Scanner sc = new Scanner(System.in);
System.out.print("Enter a number:");
int x = Integer.parseInt(sc.next());
for(int i=1 ; i<x; i*=2) {
System.out.print("*");
for(int j=0; j<i;j++) {
System.out.print(" ");
System.out.println("*");
}
正如您所发现的,时间复杂度是:
t(x)=1+2+4+...+2^{log(x)}
但是你在上面求和的结果中有一个错误。因为t(x)
是因子2
:
我知道嵌套for循环的时间复杂度等于最里面的循环执行的次数。 像外部循环从1到n的每个嵌套循环一样,它应该运行n次,但这里我们有,这使得算法运行的顺序更好。实际上,我在IDE中编写了这段代码,并在循环结束后打印了x的最终结果,对于不同的n值,我看到跳入内部for循环需要将近n倍的时间。 所以我认为这个算法的整个顺序是,但我不确定
我正在尝试分析一个算法的时间复杂度。 下面的算法旨在只检查数组的一部分,所以如果它没有多大意义,请不要担心。 我对计算循环周围的时间复杂度很困惑,请看看我的评论。 这是否意味着我们有: T(N) = (C2 C4 C5)N (C1 C3 C6) T(N) = C7*N (C8) T(N)=N?? 循环中的所有内容都是*N? 先谢谢!
我已经通过谷歌和堆栈溢出搜索,但我没有找到一个关于如何计算时间复杂度的清晰而直接的解释。 说代码像下面这样简单: 说一个像下面这样的循环: 这将只执行一次。 时间实际上被计算为而不是声明。
如何计算这些回溯算法的时间复杂度,它们是否具有相同的时间复杂度?如果不一样怎么办?请详细解释并感谢您的帮助。 我实际上有点困惑,对于断字(b),复杂度是O(2n),但对于哈密顿循环,复杂度是不同的,对于打印相同字符串的不同排列,以及对于解决n皇后问题,复杂度是不同的。
我在计算时间复杂度时遇到困难,尤其是while循环: 示例1: 时间复杂度是O(n x 3 x r)还是O(3)? 示例 2: 时间复杂度会是O(3 x n)还是O(3)?
我在考虑如何正确计算这个函数的时间复杂度: 我假设它是 O(n),其中 n 是列表的长度。我们的 while 循环是 O(n),for 循环也是 O(n), 这意味着我们得到了 2*O(n),等于 O(n)。 我说的对吗?