当前位置: 首页 > 知识库问答 >
问题:

卷积神经网络中的展平()层和密集()层有什么区别?

庾君博
2023-03-14

我对他们有严重的怀疑。任何人都可以举例说明和一些想法。

共有1个答案

卢锋
2023-03-14

顾名思义,展平将多维矩阵(Batch.Size x Img.W x Img.H x Kernel.Size)转换为一个漂亮的二维矩阵:(Batch.Size x(Img.W x Img.H x Kernel.Size))。在反向传播期间,它还会将大小增量(Batch.size x(Img.W x Img.H x Kernel.size))转换回原始值(Batch.size x Img.W x Img.H x Kernel.size)。

致密层当然是标准的完全连接层。

 类似资料:
  • 是否有方法按层(而不是端到端)训练卷积神经网络,以了解每一层对最终架构性能的贡献?

  • 本文向大家介绍卷积层和池化层有什么区别相关面试题,主要包含被问及卷积层和池化层有什么区别时的应答技巧和注意事项,需要的朋友参考一下 参考回答:   卷积层 池化层 功能 提取特征 压缩特征图,提取主要特征 操作 可惜是二维的,对于三维数据比如RGB图像(3通道),卷积核的深度必须同输入的通道数,输出的通道数等于卷积核的个数。卷积操作会改变输入特征图的通道数。 池化只是在二维数据上操作的,因此不改变

  • 本文向大家介绍卷积神经网络的卷积是什么意思? 相关面试题,主要包含被问及卷积神经网络的卷积是什么意思? 时的应答技巧和注意事项,需要的朋友参考一下   答:对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源  

  • http://i60.tinypic.com/no7tye.png图1卷积神经网络(LeNet5) 在卷积神经网络(LeNet 5)上,图1卷积过程(C1),通过迭代manneur计算最大池(子采样)(S2,S4)层。但我不明白如何正确地进行C3(卷积)层。 http://tinypic.com/r/fvzp86/8图2继续C1层 首先,作为输入,我们接收数字的MNIST 32*32灰度图像,将其

  • 注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验。 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组大小为32x32的RGB图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 想了解更多信息请参考CIFAR-10 page,以及Alex Kriz

  • 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络