我刚刚完成了ANN课程,开始学习CNN。我对CNN中的填充和跨步操作有基本的了解。
但在第一层神经元映射输入图像有困难,但我对人工神经网络中输入特征如何映射到第一层有基本的了解。
理解输入图像和第一conv层神经元之间映射的最佳方法是什么?
如何澄清我对以下代码示例的疑虑?代码取自Coursera的DL课程。
def initialize_parameters():
"""
Initializes weight parameters to build a neural network with tensorflow. The shapes are:
W1 : [4, 4, 3, 8]
W2 : [2, 2, 8, 16]
Returns:
parameters -- a dictionary of tensors containing W1, W2
"""
tf.set_random_seed(1) # so that your "random" numbers match ours
### START CODE HERE ### (approx. 2 lines of code)
W1 = tf.get_variable("W1",[4,4,3,8],initializer = tf.contrib.layers.xavier_initializer(seed = 0))
W2 = tf.get_variable("W2",[2,2,8,16],initializer = tf.contrib.layers.xavier_initializer(seed = 0))
### END CODE HERE ###
parameters = {"W1": W1,
"W2": W2}
return parameters
def forward_propagation(X, parameters):
"""
Implements the forward propagation for the model:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "W2"
the shapes are given in initialize_parameters
Returns:
Z3 -- the output of the last LINEAR unit
"""
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
W2 = parameters['W2']
### START CODE HERE ###
# CONV2D: stride of 1, padding 'SAME'
Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')
# RELU
A1 = tf.nn.relu(Z1)
# MAXPOOL: window 8x8, sride 8, padding 'SAME'
P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
# CONV2D: filters W2, stride 1, padding 'SAME'
Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')
# RELU
A2 = tf.nn.relu(Z2)
# MAXPOOL: window 4x4, stride 4, padding 'SAME'
P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
# FLATTEN
P2 = tf.contrib.layers.flatten(P2)
# FULLY-CONNECTED without non-linear activation function (not not call softmax).
# 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None"
Z3 = tf.contrib.layers.fully_connected(P2, 6,activation_fn=None)
### END CODE HERE ###
return Z3
with tf.Session() as sess:
np.random.seed(1)
X, Y = create_placeholders(64, 64, 3, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
init = tf.global_variables_initializer()
sess.run(init)
a = sess.run(Z3, {X: np.random.randn(1,64,64,3), Y: np.random.randn(1,6)})
print("Z3 = " + str(a))
每个大小为4*4*3的8个过滤器如何处理大小为64*64*3的输入图像?
步幅=1,填充=相同,batch_size=1。
到目前为止,我所理解的是第一卷积层中的每个神经元将有8个滤波器,每个滤波器的大小为4*4*3。第一卷积层中的每个神经元将获取与滤波器大小相同的部分输入图像(这里是4*4*3)并应用卷积运算并生成8个64*64特征映射。
如果我的理解正确,那么:
1.
2.
如果没有,则:
3个
或者输入图像的一部分?我们如何知道输入图像的哪一部分映射到第一层的哪个神经元?
4.
5.
6个
我找到了我的问题的相关答案,并在这里发布。
首先,神经元的概念也存在于conv层,但它是间接的。基本上,conv层中的每个神经元都处理输入图像的一部分,该部分与conv层中使用的内核大小相同。
每个神经元将只关注输入图像的特定部分(在完全连接的神经网络中,每个神经元关注整个图像),每个神经元使用n个滤波器/核来获得对图像特定部分的更多洞察力。
这些n个过滤器/内核由给定conv层中的所有神经元共享。由于这些权重(内核/过滤器)的共享性质,conv层需要学习的参数数量将更少。其中,在完全连接的ANN网络中,每个神经元作为其自身的权重矩阵,因此需要学习的参数数量更多。
现在,给定conv层“L”中的神经元数量取决于input\u大小(前一层L-1的输出)、L层中使用的Kernel\u大小、L层中使用的填充和L层中使用的步幅。
现在让我们回答上面指定的每个问题。
1.
From above code example for conv layer 1:
Batch size = 1
Input image size = 64*64*3
Kernel size = 4*4*3 ==> Taken from W1
Number of kernel = 8 ==> Taken from W1
Padding = same
stride = 1
Stride = 1 means that you are sliding the kernel one pixel at a time. Let's consider x axis and number pixels 1, 2, 3 4 ... and 64.
The first neuron will see pixels 1 2,3 and 4, then the kernel is shifted by one pixel and the next neuron will see pixels 2 3, 4 and 5 and last neuron will see pixels 61, 62, 63 and 64 This happens if you use valid padding.
In case of same padding, first neuron will see pixels 0, 1, 2, and 3, the second neuron will see pixels 1, 2, 3 and 4, the last neuron will see pixels 62,63, 64 and (one zero padded).
In case the same padding case, you end up with the output of the same size as the image (64 x 64 x 8). In the case of valid padding, the output is (61 x 61 x 8).
Where 8 in output represent the number of filters.
2.
神经元只查找输入图像的一部分,请参考第一个问题答案,您将能够在输入图像和神经元之间映射。
3个
这是该层的内核总数,该层的所有神经元将共享相同的内核,用于学习输入图像的不同部分。因此,在convnet中,要学习的参数数量比完全连接的ANN少。
4.
它取决于input_size(前一层L-1的输出),层L中使用的Kernel_size,层L中使用的填充和层L中使用的步幅。请参阅上面的第一个问题答案以获得更多澄清。
5.
与尊重数没有关系,但每个神经元使用n个过滤器/内核(这些内核在特定层的所有神经元之间共享)来了解更多关于输入图像特定部分的信息。
下面的示例代码将帮助我们阐明卷积运算的内部实现。
def conv_forward(A_prev, W, b, hparameters):
"""
Implements the forward propagation for a convolution function
Arguments:
A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
W -- Weights, numpy array of shape (f, f, n_C_prev, n_C)
b -- Biases, numpy array of shape (1, 1, 1, n_C)
hparameters -- python dictionary containing "stride" and "pad"
Returns:
Z -- conv output, numpy array of shape (m, n_H, n_W, n_C)
cache -- cache of values needed for the conv_backward() function
"""
# Retrieve dimensions from A_prev's shape (≈1 line)
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
# Retrieve dimensions from W's shape (≈1 line)
(f, f, n_C_prev, n_C) = W.shape
# Retrieve information from "hparameters" (≈2 lines)
stride = hparameters['stride']
pad = hparameters['pad']
# Compute the dimensions of the CONV output volume using the formula given above. Hint: use int() to floor. (≈2 lines)
n_H = int(np.floor((n_H_prev-f+2*pad)/stride)) + 1
n_W = int(np.floor((n_W_prev-f+2*pad)/stride)) + 1
# Initialize the output volume Z with zeros. (≈1 line)
Z = np.zeros((m,n_H,n_W,n_C))
# Create A_prev_pad by padding A_prev
A_prev_pad = zero_pad(A_prev,pad)
for i in range(m): # loop over the batch of training examples
a_prev_pad = A_prev_pad[i] # Select ith training example's padded activation
for h in range(n_H): # loop over vertical axis of the output volume
for w in range(n_W): # loop over horizontal axis of the output volume
for c in range(n_C): # loop over channels (= #filters) of the output volume
# Find the corners of the current "slice" (≈4 lines)
vert_start = h*stride
vert_end = vert_start+f
horiz_start = w*stride
horiz_end = horiz_start+f
# Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line)
a_slice_prev = a_prev_pad[vert_start:vert_end,horiz_start:horiz_end,:]
# Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line)
Z[i, h, w, c] = conv_single_step(a_slice_prev,W[:,:,:,c],b[:,:,:,c])
return Z
A_prev = np.random.randn(1,64,64,3)
W = np.random.randn(4,4,3,8)
#Don't worry about bias , tensorflow will take care of this.
b = np.random.randn(1,1,1,8)
hparameters = {"pad" : 1,
"stride": 1}
Z = conv_forward(A_prev, W, b, hparameters)
在所有文献中,他们都说convnet的输入层是形状张量(宽度、高度、通道)。我知道一个完全连接的网络有一个输入层,其神经元数量与图像中的像素数量相同(考虑到灰度图像)。所以,我的问题是,卷积神经网络的输入层中有多少个神经元?下面的图片似乎有误导性(或者我理解错了),它说输入层有3个神经元。如果是,这3个神经元代表什么?它们是张量吗?根据我对CNN的理解,难道不应该只有一个大小的神经元(高度、宽度、
在卷积神经网络中,如何知道特定conv层的输出?(我正在使用keras构建CNN模型) 例如,如果我使用一维conv层,其中number_of_filters=20,kernel_size=10,input_shape(500,1) 如果我使用的是二维conv层,其中\u过滤器的数量=64,内核大小=(5100),输入\u形状=(5720,1)(高度,宽度,通道) 以上两个conv层的输出数量是多
当将TF模型转换为tflite模型时(或者换句话说,使用“训练后量化”对模型进行量化),Relu层将从图形中消失。文档中对此进行了解释:“可以简单地从图中删除的操作(tf.identity)、用张量(tf.placeholder)替换的操作,或者合并成更复杂的操作(tf.nn.bias\u add)。” 我的问题是-如何将Relu层融合到先前的层中?(这种“融合”之外的数学是什么?这是量化模型的特
问题是卷积神经网络的数学细节。假设网络的体系结构(其目标是图像分类)是这样的 输入图像32x32 第一个隐藏层3x28x28(由3个大小为5x5的滤波器卷积而成,步幅=0,无填充),随后是激活 池化层(在2x2区域上池化),产生3x14x14输出 第二隐藏层6x10x10(由6个大小为5x5的滤波器卷积而成,步幅=0,无填充),随后激活 池化层(在2x2区域上池化),产生6x5x5输出 具有100
我想在同一张图像上使用两个不同训练的CNN(卷积神经网络)模块。我训练了两个模块,一个用于检测,一个用于分类。现在,我想在同一张图像上使用这两个模块。代码是在python中使用keras和tenorflow库。同一图像上的两个不同的CNN
本文向大家介绍Django如何将URL映射到视图,包括了Django如何将URL映射到视图的使用技巧和注意事项,需要的朋友参考一下 前言 URLconf 就像是 Django 所支撑网站的目录。它的本质是 URL 模式以及要为该 URL 模式调用的视图函数之间的映射表。你就是以这种方式告诉 Django,对于这个 URL 调用这段代码,对于那个 URL 调用那段代码。但必须记住的是视图函数必须位于