我一直在尝试用py函数在pyspark中实现udf,如下所示:
它采用了我之前训练过的bin模型。
def sentiment(frase):
classifier = load_model("sentiment_fasttext.bin")
sentiment = classifier.predict(frase)
sentiment = ''.join(map(str, sentiment))
return sentiment
sentiment = df.withColumn('sentiment', sentiment_udf(col('input_text')))
input_text列包含普通文本,df是包含整个数据的数据框。
我在哪里得到以下错误:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-52-9df3b4c420df> in <module>()
----> 1 sentiment.show()
/anaconda3/lib/python3.7/site-packages/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
376 """
377 if isinstance(truncate, bool) and truncate:
--> 378 print(self._jdf.showString(n, 20, vertical))
379 else:
380 print(self._jdf.showString(n, int(truncate), vertical))
/anaconda3/lib/python3.7/site-packages/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/anaconda3/lib/python3.7/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/anaconda3/lib/python3.7/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o380.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 10.0 failed 1 times, most recent failure: Lost task 0.0 in stage 10.0 (TID 10, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 366, in main
func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 241, in read_udfs
arg_offsets, udf = read_single_udf(pickleSer, infile, eval_type, runner_conf)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 168, in read_single_udf
f, return_type = read_command(pickleSer, infile)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 69, in read_command
command = serializer._read_with_length(file)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py", line 172, in _read_with_length
return self.loads(obj)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py", line 580, in loads
return pickle.loads(obj, encoding=encoding)
ModuleNotFoundError: No module named 'fasttext'
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:81)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:64)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3383)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2544)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2758)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 366, in main
func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 241, in read_udfs
arg_offsets, udf = read_single_udf(pickleSer, infile, eval_type, runner_conf)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 168, in read_single_udf
f, return_type = read_command(pickleSer, infile)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 69, in read_command
command = serializer._read_with_length(file)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py", line 172, in _read_with_length
return self.loads(obj)
File "/anaconda3/lib/python3.7/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py", line 580, in loads
return pickle.loads(obj, encoding=encoding)
ModuleNotFoundError: No module named 'fasttext'
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:81)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:64)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Fasttext当前正在运行,python函数在同一个笔记本上运行没有任何问题。
谢谢你的帮助,
这是因为您尝试序列化的对象包含本机代码,因此不可能。您可以使用save_model将其保存在磁盘上,稍后再进行检索。
Git问题链接
现在我的问题是,如何在自定义的而不是自定义的中重写方法?我没有在这里公布我的代码,因为它与链接的代码本质上是相同的,只是我需要为子创建一个自定义的来代替,这样它就可以按照“pptang”的答案所述进行正确的度量。 否则,有没有比在第二个RecyclerView中使用1个RecyclerView更好的方法?只能有1个RecyclerView使用上述列表和每个中唯一项的网格填充活动/片段吗?
问题内容: 两者之间到底有什么区别 和 第一个只是加快字段初始化速度的捷径吗?有性能方面的考虑吗? 问题答案: 第二种形式总是创建一个空的地图。 第一种形式是地图文字的特殊情况。地图文字允许创建 非空 地图: 现在,您的(通用)示例: 是没有初始值(键/值对)的地图文字。它完全等同于: 此外,这是为地图指定初始容量(大于初始分配的元素数量)的唯一方法。例: 将创建一个地图,该地图具有足够的空间来容
问题内容: 查看量角器文档,我发现有一个选项可以不使用Selenium服务器使用flag 来运行量角器。 使用硒服务器和不使用硒服务器运行量角器测试之间的区别是什么,除了后者仅支持Chrome,Firefox? 问题答案: 首先,目前,您有 5种不同的内置选项/方式来连接浏览器驱动程序 : 指定在本地启动Selenium独立服务器 指定连接到正在运行的硒服务器(本地或远程) 设置并连接到Sauce
代码: 上下文:尝试在JavaScript中使用 编辑: 完整代码: 编辑: 无法获取
在GlassFish Server开源版本3.1中部署。1(构建12): 引起原因:java.security.PrivilegedActionExcema:com.sun.xml.bind.v2.runtime.IllegalAnnotationsExceptions: 1个IllegalAnnotationExceptions的计数没有ObjectFactory与@XmlElementDecl
问题内容: 我正在尝试制作一个支持cookie的URLConnection。根据文档,我可以使用: 我无法使此代码正常工作,然后我看到这仅适用于API 9(2.3)。但是,在较旧的模拟器中使用CookieManager不会出现错误,CookieManager存在,但是无法构造。有什么方法可以使此版本适用于早期版本?我试过了: 但这不起作用。 问题答案: 我能够使用Ian Brown的CookieM