我需要通过公共行或列标签合并2个大型csv文件(每个so ~ 500mb中约4000万个数据元素),这些标签可以由用户指定。例如,如果数据集1。包含csv:
patient_id x1 x2 x3
pi1 1 2 3
pi3 4 5 6
和数据集2。包含csv:
patient_id y1 y2 y3
pi0 0 0 0
pi1 11 12 13
pi2 99 98 97
pi3 14 15 16
用户可以指定通过行标签(患者ID)和结果输出来合并这两个文件。csv将是:
patient_id x1 x2 x3 y1 y2 y3
pi1 1 2 3 11 12 13
pi3 4 5 6 14 15 16
因为我们只合并了两个输入文件共用(相交)的患者ID信息。我解决这个问题的策略是创建一个HashMap,其中要合并的行或列标签(在本例中是行标签,即患者id)是键,患者id的数据作为值存储为ArrayList。我为每个输入数据文件创建一个HashMap,然后根据相似的键合并值。我将数据表示为ArrayList类型的二维ArrayList
下面是依赖于下面的数据类文件的DataMerge类。
import java.util.HashMap;
import java.util.ArrayList;
public class DataMerge {
/**Merges two Data objects by a similar label. For example, if two data sets represent
* different data for the same set of patients, which are represented by their unique patient
* ID, mergeData will return a data set containing only those patient IDs that are common to both
* data sets along with the data represented in both data sets. labelInRow1 and labelInRow2 separately
* indicate whether the common labels are in separate rows(true) of d1 and d2, respectively, or separate columns otherwise.*/
public static Data mergeData(Data d1, Data d2, boolean labelInRow1,
boolean labelInRow2){
ArrayList<ArrayList<String>> mergedData = new ArrayList<ArrayList<String>>();
HashMap<String,ArrayList<String>> d1Map = d1.mapFeatureToData(labelInRow1);
HashMap<String,ArrayList<String>> d2Map = d2.mapFeatureToData(labelInRow2);
ArrayList<String> d1Features;
ArrayList<String> d2Features;
if (labelInRow1){
d1Features = d1.getColumnLabels();
} else {
d1Features = d1.getRowLabels();
}
if (labelInRow2){
d2Features = d2.getColumnLabels();
} else {
d2Features = d2.getRowLabels();
}
d1Features.trimToSize();
d2Features.trimToSize();
ArrayList<String> mergedFeatures = new ArrayList<String>();
if ((d1.getLabelLabel() != "") && (d1.getLabelLabel() == "")) {
mergedFeatures.add(d1.getLabelLabel());
}
else if ((d1.getLabelLabel() == "") && (d1.getLabelLabel() != "")) {
mergedFeatures.add(d2.getLabelLabel());
} else {
mergedFeatures.add(d1.getLabelLabel());
}
mergedFeatures.addAll(d1Features);
mergedFeatures.addAll(d2Features);
mergedFeatures.trimToSize();
mergedData.add(mergedFeatures);
for (String key : d1Map.keySet()){
ArrayList<String> curRow = new ArrayList<String>();
if (d2Map.containsKey(key)){
curRow.add(key);
curRow.addAll(d1Map.get(key));
curRow.addAll(d2Map.get(key));
curRow.trimToSize();
mergedData.add(curRow);
}
}
mergedData.trimToSize();
Data result = new Data(mergedData, true);
return result;
}
}
下面是数据类型对象及其关联的HashMap生成函数以及一些行和列标签提取方法。
import java.util.*;
import java.io.*;
/**Represents an unlabeled or labeled data set as a series of nested ArrayLists, where each nested
* ArrayList represents a line of the input data.*/
public class Data {
private ArrayList<String> colLabels = new ArrayList<String>(); //row labels
private ArrayList<String> rowLabels = new ArrayList<String>(); //column labels
private String labelLabel;
private ArrayList<ArrayList<String>> unlabeledData; //data without row and column labels
/**Returns an ArrayList of ArrayLists, where each nested ArrayList represents a line
*of the input file.*/
@SuppressWarnings("resource")
private static ArrayList<ArrayList<String>> readFile(String filePath, String fileSep){
ArrayList<ArrayList<String>> result = new ArrayList<ArrayList<String>>();
try{
BufferedReader input = new BufferedReader(new FileReader (filePath));
String line = input.readLine();
while (line != null){
String[] splitLine = line.split(fileSep);
result.add(new ArrayList<String>(Arrays.asList(splitLine)));
line = input.readLine();
}
}
catch (Exception e){
System.err.println(e);
}
result.trimToSize();;
return result;
}
/**Returns an ArrayList of ArrayLists, where each nested ArrayList represents a line of the input
* data but WITHOUT any row or column labels*/
private ArrayList<ArrayList<String>> extractLabelsAndData(String filePath, String fileSep){
ArrayList<ArrayList<String>> tempData = new ArrayList<ArrayList<String>>();
tempData.addAll(readFile(filePath, fileSep));
tempData.trimToSize();
this.colLabels.addAll(tempData.remove(0));
this.labelLabel = this.colLabels.remove(0);
this.colLabels.trimToSize();
for (ArrayList<String> line : tempData){
this.rowLabels.add(line.remove(0));
}
this.rowLabels.trimToSize();
return tempData;
}
/**Returns an ArrayList of ArrayLists, where each nested ArrayList represents a line of the input
* data but WITHOUT any row or column labels. Does mutate the original data*/
private ArrayList<ArrayList<String>> extractLabelsAndData (ArrayList<ArrayList<String>> data){
ArrayList<ArrayList<String>> result = new ArrayList<ArrayList<String>>();
for (ArrayList<String> line : data){
ArrayList<String> temp = new ArrayList<String>();
for (String element : line){
temp.add(element);
}
temp.trimToSize();
result.add(temp);
}
this.colLabels.addAll(result.remove(0));
this.labelLabel = this.colLabels.remove(0);
this.colLabels.trimToSize();
for (ArrayList<String> line : result){
this.rowLabels.add(line.remove(0));
}
this.rowLabels.trimToSize();
result.trimToSize();
return result;
}
/**Returns the labelLabel for the data*/
public String getLabelLabel(){
return this.labelLabel;
}
/**Returns an ArrayList of the labels while maintaining the order
* in which they appear in the data. Row indicates that the desired
* features are all in the same row. Assumed that the labels are in the
* first row of the data. */
public ArrayList<String> getColumnLabels(){
return this.colLabels;
}
/**Returns an ArrayList of the labels while maintaining the order
* in which they appear in the data. Column indicates that the desired
* features are all in the same column. Assumed that the labels are in the
* first column of the data.*/
public ArrayList<String> getRowLabels(){
return this.rowLabels;
}
/**Creates a HashMap where a list of feature labels are mapped to the entire data. For example,
* if a data set contains patient IDs and test results, this function can be used to create
* a HashMap where the keys are the patient IDs and the values are an ArrayList of the test
* results. The boolean input isRow, which, when true, designates that the
* desired keys are listed in the rows or false if they are in the columns.*/
public HashMap<String, ArrayList<String>> mapFeatureToData(boolean isRow){
HashMap<String, ArrayList<String>> featureMap = new HashMap<String,ArrayList<String>>();
if (!isRow){
for (ArrayList<String> line : this.unlabeledData){
for (int i = 0; i < this.colLabels.size(); i++){
if (featureMap.containsKey(this.colLabels.get(i))){
featureMap.get(this.colLabels.get(i)).add(line.get(i));
} else{
ArrayList<String> firstValue = new ArrayList<String>();
firstValue.add(line.get(i));
featureMap.put(this.colLabels.get(i), firstValue);
}
}
}
} else {
for (int i = 0; i < this.rowLabels.size(); i++){
if (!featureMap.containsKey(this.rowLabels.get(i))){
featureMap.put(this.rowLabels.get(i), this.unlabeledData.get(i));
} else {
featureMap.get(this.rowLabels.get(i)).addAll(this.unlabeledData.get(i));
}
}
}
return featureMap;
}
/**Writes the data to a file in the specified outputPath. sep indicates the data delimiter.
* labeledOutput indicates whether or not the user wants the data written to a file to be
* labeled or unlabeled. If the data was unlabeled to begin with, then labeledOutput
* should not be set to true. */
public void writeDataToFile(String outputPath, String sep){
try {
PrintStream writer = new PrintStream(new BufferedOutputStream (new FileOutputStream (outputPath, true)));
String sol = this.labelLabel + sep;
for (int n = 0; n < this.colLabels.size(); n++){
if (n == this.colLabels.size()-1){
sol += this.colLabels.get(n) + "\n";
} else {
sol += this.colLabels.get(n) + sep;
}
}
for (int i = 0; i < this.unlabeledData.size(); i++){
ArrayList<String> line = this.unlabeledData.get(i);
sol += this.rowLabels.get(i) + sep;
for (int j = 0; j < line.size(); j++){
if (j == line.size()-1){
sol += line.get(j);
} else {
sol += line.get(j) + sep;
}
}
sol += "\n";
}
sol = sol.trim();
writer.print(sol);
writer.close();
} catch (Exception e){
System.err.println(e);
}
}
/**Constructor for Data object. filePath specifies the input file directory,
* fileSep indicates the file separator used in the input file, and hasLabels
* designates whether the input data has row and column labels. Note that if
* hasLabels is set to true, it is assumed that there are BOTH row and column labels*/
public Data(String filePath, String fileSep, boolean hasLabels){
if (hasLabels){
this.unlabeledData = extractLabelsAndData(filePath, fileSep);
this.unlabeledData.trimToSize();
} else {
this.unlabeledData = readFile(filePath, fileSep);
this.unlabeledData.trimToSize();
}
}
/**Constructor for Data object that accepts nested ArrayLists as inputs*/
public Data (ArrayList<ArrayList<String>> data, boolean hasLabels){
if (hasLabels){
this.unlabeledData = extractLabelsAndData(data);
this.unlabeledData.trimToSize();
} else {
this.unlabeledData = data;
this.unlabeledData.trimToSize();
}
}
}
该程序适用于小数据集,但已经5天了,合并仍未完成。我正在寻找一种更高效的时间和内存解决方案。有人建议使用字节数组而不是字符串,这可能会使它运行得更快。有人有什么建议吗?
编辑:我在代码中做了一些挖掘,发现读取输入文件并合并它们几乎不需要时间(比如20秒)。编写文件需要5天的时间
您将数百万行数据的所有数据字段连接到一个巨大的字符串中,然后写入单个字符串。这是由于在分配和重新分配超大字符串时内存抖动导致的缓慢死亡,为添加到字符串中的每个字段和分隔符一遍又一遍地复制它们。大约在第三天或第四天,每根弦都是。。。数百万个字符长。。。而你可怜的垃圾收集者正在大汗淋漓,把它发泄在你身上。
不要那样做。
分别构建输出文件的每一行并将其写入。然后构建下一行。
此外,使用StringBuilder类来构建行,尽管在上一步中您可能会得到很大的改进,甚至不必为此费心。虽然这是一种方式,你应该学会如何做。
问题内容: 我正在使用Python脚本处理大型CSV文件(数以10M行的GB数)。 这些文件具有不同的行长,并且无法完全加载到内存中进行分析。 每行由脚本中的一个函数分别处理。分析一个文件大约需要20分钟,并且看来磁盘访问速度不是问题,而是处理/函数调用。 代码看起来像这样(非常简单)。实际的代码使用Class结构,但这是相似的: 鉴于计算需要共享的数据结构,使用多核在Python中并行运行分析的
下面的代码演示了一个非常奇怪的错误。一旦"源"文件被关闭"目标"文件不能被保存和关闭,它将抛出"java.io.IOExc0019: COSStream已被关闭,无法读取。也许它的附加文件已经关闭了?" 如果我们注释掉保存源文件,那么目标文件将正确保存并关闭。这似乎清楚地表明源文件包含一个同样存在于目标文件中的costream对象。当我们关闭源文件时,源文件costream似乎被关闭,然后目标文件
问题内容: 我有一个要合并的文件数组。这是我尝试过的,但是没有用。 问题答案: 使用IOUtils可以做到这一点。看我的例子: 如果您不能使用IOUtils lib,请编写自己的实现。例:
问题内容: 我想通过unix中的一列合并两个文件。 我有file_a: 我还有另一个file_b: 我想在命令行中合并这些文件。我想按主题合并文件a和b。由于每个文件的长度约为200万行,因此我在R中进行了尝试,但由于数据量而冻结,有人可以帮助我在Linux中进行此操作吗?所需的输出: 请帮忙,谢谢! 问题答案: 结帐。就您而言,您甚至不需要任何标志:
问题内容: 我想从CSV读取巨大的数据,包含大约500,000行。我正在使用OpenCSV库。我的代码是这样的 多达200,000条记录,数据被读入User Bean对象列表。但是对于更多的数据,我得到了 我在“ eclipse.ini”文件中有此内存设置 我正在考虑将大文件拆分为单独文件并再次读取这些文件的解决方案,我认为这是一个冗长的解决方案。 还有什么其他方法可以避免OutOfMemoryE
问题内容: 好的,这可能是java中的小问题。我们不能在一个文件中定义两个公共类。但是,在《 SCJP学习指南》一书的示例中,提到了以下示例: 当我将其复制粘贴到netbeans中时,立即引发了编译错误,该公共类A应该在单独的文件中提及。SCJP stdydy指南中的示例真的错误吗?同样在一些模拟测试中,我发现许多问题都具有这种模式,但是在所有选项中都没有提到编译器错误。在这里担心 问题答案: 是