我一直在用Scala 2.11阅读spark structured streaming(2.4.4)中Kafka的avro序列化消息。为此,我使用了spark avro(下面的dependency)。我使用合流Kafka库从python生成Kafka消息。Spark streaming能够使用模式来使用消息,但无法正确读取字段的值。我准备了一个简单的例子来说明这个问题,代码在这里可用:https://github.com/anigmo97/SimpleExamples/tree/master/Spark_streaming_kafka_avro_scala
我用python创建记录,记录的模式是:
{
"type": "record",
"namespace": "example",
"name": "RawRecord",
"fields": [
{"name": "int_field","type": "int"},
{"name": "string_field","type": "string"}
]
}
它们是这样产生的:
from time import sleep
from confluent_kafka.avro import AvroProducer, load, loads
def generate_records():
avro_producer_settings = {
'bootstrap.servers': "localhost:19092",
'group.id': 'groupid',
'schema.registry.url': "http://127.0.0.1:8081"
}
producer = AvroProducer(avro_producer_settings)
key_schema = loads('"string"')
value_schema = load("schema.avsc")
i = 1
while True:
row = {"int_field": int(i), "string_field": str(i)}
producer.produce(topic="avro_topic", key="key-{}".format(i),
value=row, key_schema=key_schema, value_schema=value_schema)
print(row)
sleep(1)
i+=1
spark structured streaming(在Scala中)的消耗如下:
import org.apache.spark.sql.{ Dataset, Row}
import org.apache.spark.sql.streaming.{ OutputMode, StreamingQuery}
import org.apache.spark.sql.avro._
...
try {
log.info("----- reading schema")
val jsonFormatSchema = new String(Files.readAllBytes(
Paths.get("./src/main/resources/schema.avsc")))
val ds:Dataset[Row] = sparkSession
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaServers)
.option("subscribe", topic)
.load()
val output:Dataset[Row] = ds
.select(from_avro(ds.col("value"), jsonFormatSchema) as "record")
.select("record.*")
output.printSchema()
var query: StreamingQuery = output.writeStream.format("console")
.option("truncate", "false").outputMode(OutputMode.Append()).start();
query.awaitTermination();
} catch {
case e: Exception => log.error("onApplicationEvent error: ", e)
//case _: Throwable => log.error("onApplicationEvent error:")
}
...
在spark中打印模式时,奇怪的是字段可以为空,尽管avro模式不允许这样做。Spark展示了这一点:
root
|-- int_field: integer (nullable = true)
|-- string_field: string (nullable = true)
我已经用python检查了另一个消费者的消息,这些消息很好,但与spark显示的消息内容无关。
+---------+------------+
|int_field|string_field|
+---------+------------+
|0 | |
+---------+------------+
使用的主要依赖项有:
<properties>
<spark.version>2.4.4</spark.version>
<scala.version>2.11</scala.version>
</properties>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-avro_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
有人知道为什么会这样吗?
提前感谢。重现错误的代码在这里:
https://github.com/anigmo97/SimpleExamples/tree/master/Spark_streaming_kafka_avro_scala
问题是,我在使用python中的confluent_kafka库,在使用spark avro库的spark结构化流媒体中阅读avro消息。
Confluent_kafka库使用合流的avro格式,并使用标准avro格式激发avro读取。
不同之处在于,为了使用模式注册表,conFluent avro在消息前面加上四个字节,指示应该使用哪个模式。
资料来源:https://www.confluent.io/blog/kafka-connect-tutorial-transfer-avro-schemas-across-schema-registry-clusters/
为了能够使用confluent avro并从spark结构化流媒体中读取它,我为Abris替换了spark avro库(Abris允许将avro和confluent avro与spark集成)。https://github.com/AbsaOSS/ABRiS
问题是,我在使用python中的confluent_kafka库,在使用spark avro库的spark结构化流媒体中阅读avro消息。
Confluent_kafka库使用合流的avro格式,并使用标准avro格式激发avro读取。
不同之处在于,为了使用模式注册表,conFluent avro在消息前面加上四个字节,指示应该使用哪个模式。
资料来源:https://www.confluent.io/blog/kafka-connect-tutorial-transfer-avro-schemas-across-schema-registry-clusters/
为了能够使用confluent avro并从spark结构化流媒体中读取它,我为Abris替换了spark avro库(Abris允许将avro和confluent avro与spark集成)。https://github.com/AbsaOSS/ABRiS
我的依赖关系发生了如下变化:
<properties>
<spark.version>2.4.4</spark.version>
<scala.version>2.11</scala.version>
</properties>
<!-- SPARK- AVRO -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-avro_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- SPARK -AVRO AND CONFLUENT-AVRO -->
<dependency>
<groupId>za.co.absa</groupId>
<artifactId>abris_2.11</artifactId>
<version>3.1.1</version>
</dependency>
在这里,您可以看到一个简单的示例,该示例获取消息并将其值反序列化为avro和汇合avro。
var input: Dataset[Row] = sparkSession.readStream
//.format("org.apache.spark.sql.kafka010.KafkaSourceProvider")
.format("kafka")
.option("kafka.bootstrap.servers", kafkaServers)
.option("subscribe", topicConsumer)
.option("failOnDataLoss", "false")
// .option("startingOffsets", "latest")
// .option("startingOffsets", "earliest")
.load();
// READ WITH spark-avro library (standard avro)
val jsonFormatSchema = new String(Files.readAllBytes(Paths.get("./src/main/resources/schema.avsc")))
var inputAvroDeserialized: Dataset[Row] = input
.select(from_avro(functions.col("value"), jsonFormatSchema) as "record")
.select("record.*")
//READ WITH Abris library (confuent avro)
val schemaRegistryConfig = Map(
SchemaManager.PARAM_SCHEMA_REGISTRY_URL -> "http://localhost:8081",
SchemaManager.PARAM_SCHEMA_REGISTRY_TOPIC -> topicConsumer,
SchemaManager.PARAM_VALUE_SCHEMA_NAMING_STRATEGY -> SchemaManager.SchemaStorageNamingStrategies.TOPIC_NAME, // choose a subject name strategy
SchemaManager.PARAM_VALUE_SCHEMA_ID -> "latest" // set to "latest" if you want the latest schema version to used
)
var inputConfluentAvroDeserialized: Dataset[Row] = inputConfluentAvroSerialized
.select(from_confluent_avro(functions.col("value"), schemaRegistryConfig) as "record")
.select("record.*")
我有一个 spark 2.0 应用程序,它使用火花流(使用火花流-kafka-0-10_2.11)从 kafka 读取消息。 结构化流看起来很酷,所以我想尝试迁移代码,但我不知道如何使用它。 在常规流中,我使用kafkaUtils创建Dstrean,在我传递的参数中,它是值deserializer。 在结构化流中,文档说我应该使用DataFrame函数进行反序列化,但我不知道这到底是什么意思。 我
我第一次使用pyspark。Spark版本:2.3.0Kafka版本:2.2.0 我有一个Kafka制作人,它以avro格式发送嵌套数据,我正试图在pyspark中编写spark流/结构化流的代码,它将来自Kafka的avro反序列化为数据帧,并进行转换,将其以拼花格式写入s3。我在spark/scala中找到了avro转换器,但pyspark中的支持尚未添加。如何在pyspark中转换相同的值。
我以前能够运行Kafka结构流编程。但是突然间,我所有的结构流python程序都失败了,出现了一个错误。我从Spark网站上拿了基本的Kafka结构流式编程,也以同样的错误失败。 spark-submit--packages org.apache.spark:spark-sql-kafka-0-102.11:2.2.0c:\users\ranjith.gangam\pycharmprojects\
我试图从kafka主题获取数据并将其推送到hdfs位置。我面临以下问题。 在每条消息(kafka)之后,hdfs位置都会更新为带有.c000.csv格式的部分文件。我已经在HDFS位置的顶部创建了一个hive表,但是HIVE无法读取从火花结构化流写入的任何数据。 以下是spark结构化流媒体之后的文件格式 以下是我要插入的代码: 谁能帮帮我,为什么要创建这样的文件? 如果我执行dfs-cat/pa