我是hadoop的新手,刚刚安装了Hadoop2.6。
16/04/30 20:30:33 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/04/30 20:30:34 WARN mapreduce.JobSubmitter: No job jar file set. User classes may not be found. See Job or Job#setJar(String).
16/04/30 20:30:34 INFO input.FileInputFormat: Total input paths to process : 1
16/04/30 20:30:34 INFO mapreduce.JobSubmitter: number of splits:1
16/04/30 20:30:34 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1461971181442_0005
16/04/30 20:30:34 INFO mapred.YARNRunner: Job jar is not present. Not adding any jar to the list of resources.
16/04/30 20:30:34 INFO impl.YarnClientImpl: Submitted application application_1461971181442_0005
16/04/30 20:30:34 INFO mapreduce.Job: The url to track the job: http://yoni-Lenovo-Z40-70:8088/proxy/application_1461971181442_0005/
16/04/30 20:30:34 INFO mapreduce.Job: Running job: job_1461971181442_0005
16/04/30 20:30:41 INFO mapreduce.Job: Job job_1461971181442_0005 running in uber mode : false
16/04/30 20:30:41 INFO mapreduce.Job: map 0% reduce 0%
16/04/30 20:30:46 INFO mapreduce.Job: map 100% reduce 0%
16/04/30 20:30:51 INFO mapreduce.Job: map 100% reduce 100%
16/04/30 20:30:52 INFO mapreduce.Job: Job job_1461971181442_0005 completed successfully
16/04/30 20:30:52 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=6
FILE: Number of bytes written=211511
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=170
HDFS: Number of bytes written=86
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=2923
Total time spent by all reduces in occupied slots (ms)=2526
Total time spent by all map tasks (ms)=2923
Total time spent by all reduce tasks (ms)=2526
Total vcore-seconds taken by all map tasks=2923
Total vcore-seconds taken by all reduce tasks=2526
Total megabyte-seconds taken by all map tasks=2993152
Total megabyte-seconds taken by all reduce tasks=2586624
Map-Reduce Framework
Map input records=1
Map output records=0
Map output bytes=0
Map output materialized bytes=6
Input split bytes=116
Combine input records=0
Combine output records=0
Reduce input groups=0
Reduce shuffle bytes=6
Reduce input records=0
Reduce output records=0
Spilled Records=0
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=166
CPU time spent (ms)=1620
Physical memory (bytes) snapshot=426713088
Virtual memory (bytes) snapshot=3818450944
Total committed heap usage (bytes)=324009984
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=54
File Output Format Counters
Bytes Written=86
16/04/30 20:30:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/04/30 20:30:52 WARN mapreduce.JobSubmitter: No job jar file set. User classes may not be found. See Job or Job#setJar(String).
16/04/30 20:30:52 INFO input.FileInputFormat: Total input paths to process : 1
16/04/30 20:30:52 INFO mapreduce.JobSubmitter: number of splits:1
16/04/30 20:30:52 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1461971181442_0006
16/04/30 20:30:52 INFO mapred.YARNRunner: Job jar is not present. Not adding any jar to the list of resources.
16/04/30 20:30:52 INFO impl.YarnClientImpl: Submitted application application_1461971181442_0006
16/04/30 20:30:52 INFO mapreduce.Job: The url to track the job: http://yoni-Lenovo-Z40-70:8088/proxy/application_1461971181442_0006/
16/04/30 20:30:52 INFO mapreduce.Job: Running job: job_1461971181442_0006
16/04/30 20:31:01 INFO mapreduce.Job: Job job_1461971181442_0006 running in uber mode : false
16/04/30 20:31:01 INFO mapreduce.Job: map 0% reduce 0%
16/04/30 20:31:07 INFO mapreduce.Job: map 100% reduce 0%
16/04/30 20:31:12 INFO mapreduce.Job: map 100% reduce 100%
16/04/30 20:31:13 INFO mapreduce.Job: Job job_1461971181442_0006 completed successfully
16/04/30 20:31:13 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=6
FILE: Number of bytes written=210495
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=216
HDFS: Number of bytes written=0
HDFS: Number of read operations=7
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3739
Total time spent by all reduces in occupied slots (ms)=3133
Total time spent by all map tasks (ms)=3739
Total time spent by all reduce tasks (ms)=3133
Total vcore-seconds taken by all map tasks=3739
Total vcore-seconds taken by all reduce tasks=3133
Total megabyte-seconds taken by all map tasks=3828736
Total megabyte-seconds taken by all reduce tasks=3208192
Map-Reduce Framework
Map input records=0
Map output records=0
Map output bytes=0
Map output materialized bytes=6
Input split bytes=130
Combine input records=0
Combine output records=0
Reduce input groups=0
Reduce shuffle bytes=6
Reduce input records=0
Reduce output records=0
Spilled Records=0
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=125
CPU time spent (ms)=1010
Physical memory (bytes) snapshot=427823104
Virtual memory (bytes) snapshot=3819626496
Total committed heap usage (bytes)=324534272
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=86
File Output Format Counters
Bytes Written=0
hadoop jar./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar grep/user/yoni/input/user/yoni/output101“dfs[a-z.]+”
以及在伪分布式模式下的设置,就像在所有的基本tutilies中一样
在本例中,您应该将hadoop-2.6.4/etc/hadoop
下的所有xml
文件放入名为'input'的hdfs
文件夹中,该文件夹位于正确的用户主目录(此处为'yoni)中。
因此,首先通过浏览http://localhost:50070
(默认情况下)检查HDFS
后台进程状态。
其次,通过bin/hdfs dfs-ls/user/yoni/input
或bin/hdfs fsck/-files-blocks
检查文件的状态。
如果一切顺利,它应该会起作用。
Hadoop MapReduce下一代-设置单个节点集群
它考虑第一个KV对并给出相同的输出...!!??因为我只有一个价值。为什么它同时考虑钥匙和制造 既然我们考虑的是一次一对千伏?我知道这是一个错误的假设;请有人纠正我这一点
通常,Hadoop示例定义了如何对一个文件或多个文件进行字数计算,字数计算的结果将来自整个集合! 我希望对每个段落进行wordcount,并将其存储在单独的文件中,如paragh(i)_wordcnt.txt。 我能看到para2写para1的wordcount结果吗?或者,如果以其他方式在单独的文件中写入每一段,该如何做,像这样的顺序
因此,从Hadoop教程网站(http://Hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapreducetutorial.html#source_code)上,我了解了如何使用map reduce方法实现单词计数,并且输出的单词都是出现频率的。 我想做的是只有输出是最高频率
所以,我一直在跟踪这个网站上的Mapreduce python代码(http://www . Michael-noll . com/tutorials/writing-an-Hadoop-Mapreduce-program-in-python/),它从一个文本文件中返回字数(即单词及其在文本中出现的次数)。但是,我想知道如何返回出现次数最多的单词。映射器和缩减器如下- 所以,我知道我需要在减速器的