我指的是在此链接https://richliao.github.io/supervised/classification/2016/11/26/textclassifier-convolutional上实现的“使用CNN的文本分类”。在“简化卷积”一节中,他们使用了以下Keras层:
Conv1D(128、5,激活='RELU')
窗口大小为5,输入中的通道数为100。因此,输入大小为5*100。您需要将整个输入连接到128个过滤器。因此,有5*100*128个不同的边缘权值需要学习。此外,由于有128个滤波器,偏置矢量的大小为128。因此,该层需要学习的参数总数为5*100*128+128。
我正在使用千层面为MNIST数据集创建CNN。我将密切关注这个示例:卷积神经网络和Python特征提取。 我目前拥有的CNN架构(不包括任何退出层)是: 这将输出以下图层信息: 并输出可学习参数的数量为217,706 我想知道这个数字是如何计算的?我已经阅读了许多资源,包括这个StackOverflow的问题,但没有一个明确概括了计算。 如果可能,每层可学习参数的计算是否可以泛化? 例如,卷积层:
我是CNN研究的新手,我从看Andrew'NG的课程开始。有一个例子我不明白: 他是如何计算#参数值的?
我正在试图理解卷积神经网络中的维度是如何表现的。在下图中,输入为带1个通道的28乘28矩阵。然后是32个5乘5的过滤器(高度和宽度步幅为2)。所以我理解结果是14乘14乘32。但是在下一个卷积层中,我们有64个5×5的滤波器(同样是步幅2)。那么为什么结果是7乘7乘64而不是7乘7乘32*64呢?我们不是将64个滤波器中的每一个应用于32个通道中的每一个吗?
我在Keras有卷积神经网络。我需要知道每个图层中要素地图的尺寸。我的输入是28 x 28像素的图像。我知道有一种计算方法,但我不知道如何计算。下面是我使用Keras的代码片段。 最后,这就是我想画的。非常感谢。
如何计算CNN网络中的参数总数 代码如下: 如何获取320、18496、73856、590336、2052,有人能解释一下吗?
我找不到正确的公式来计算CNN中一个卷积层中的MAC数量。我从Quora尝试了这个公式 式中:输入特征映射的HW大小;KL滤波器大小S跨距C通道输入M输出特征映射N输入特征映射数 我举了一个例子:1个输入图像5x5x1 1个过滤器3x3x1然后我做了一个天真的计算,我得到了81个MAC。但当我使用上述公式时,ai得到了9。 我想有些事情我不明白。 提前感谢