如果输入到神经网络卷积层的是128x128x3大小的图像,并对其应用40个5x5大小的滤波器,那么输出大小会是多少?
您可以通过两种方法找到它:简单的方法:inpput_size-(filter_size-1),但第二种方法是找到输出大小的标准方法。
Second method: (((W - K + 2P)/S) + 1)
Here W = Input size
K = Filter size
S = Stride
P = Padding
我在Keras建立了一个卷积神经网络。 根据CS231讲座,卷积操作为每个过滤器创建一个特征映射(即激活映射),然后将其堆叠在一起。在我的例子中,卷积层有一个300维的输入。因此,我预计会进行以下计算: 每个过滤器的窗口大小为5。因此,每个滤波器产生300-5 1=296个卷积 但是,实际输出形状看起来不同: 偏移值的形状很有意义,因为每个过滤器都有一个偏移值。然而,我不了解重量的形状。显然,第一
假设我们有一个5x5大小的图像和一个3x3大小的内核,带有跨步2和填充。通过神经网络中的卷积层后,输出图像的大小是多少。
卷积神经网络有一个批量过滤器, 持续不断的在图片上滚动收集图片里的信息,每一次收集的时候都只是收集一小块像素区域, 然后把收集来的信息进行整理, 这时候整理出来的信息有了一些实际上的呈现, 比如这时的神经网络能看到一些边缘的图片信息, 然后在以同样的步骤, 用类似的批量过滤器扫过产生的这些边缘信息, 神经网络从这些边缘信息里面总结出更高层的信息结构,比如说总结的边缘能够画出眼睛,鼻子等等. 再经过
Convolution1D层 keras.layers.convolutional.Convolution1D(nb_filter, filter_length, init='uniform', activation='linear', weights=None, border_mode='valid', subsample_length=1, W_regularizer=None, b_regu
Conv1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zero
我在keras建立了一个ConvNet,这是其中的两层 第一层大小的输出,我完全理解,因为有8个大小为3x3的过滤器,每个过滤器都被应用于生成单独的特征图,因此 第二层的输出大小为24x24x16,我不理解。由于第二层的每个过滤器将作用于第一层输出的每个特征映射,因此输出的大小不应该是24x24x128吗? 基本上,我不明白一层的输出是如何馈送到另一层的输入的