我如何用CUDA在一个相对较大的图像和一个非常小的内核(3x3)之间执行快速的2D卷积?
您说得对,3x3内核不适合基于FFT的方法。处理这个问题的最好方法是将内核推入恒定内存(或者,如果您使用的是Fermi+卡,这应该不太重要)。
因为您知道内核大小,所以最快的方法是将输入图像/信号的块读入共享内存,并执行展开的乘法和加法操作。
--
array kernel = array(3, 3, h_kernel, afHost); // Transfer the kernel to gpu
array image = array(w, h, h_image , afHost); // Transfer the image to gpu
array result = convolve2(image, kernel); // Performs 2D convolution
例如,如果您有10个图像要使用相同的内核进行卷积,那么您可以执行如下操作:
array kernel = array(3, 3, h_kernel, afHost); // Transfer the kernel to gpu
array images = array(w, h, 10, h_images, afHost); // Transfer the images to gpu
array res = convolve2(images, kernel); // Perform all operations simultaneously
--
我在AccelerEyes工作,积极参与ArrayFire的工作。
卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本节中,我们将介绍简单形式的二维卷积层的工作原理。 二维互相关运算 虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cro
对于用大内核(筛选器)卷积大图像来说速度慢得不切实际。将一个1024x1024的图像与一个相同大小的内核进行卷积需要几分钟的时间。为了进行比较,立即返回结果。 我找到了和。 然而,我并不清楚如何使用这些函数执行简单的图像过滤。 如何使用FFT与TensorFlow实现快速二维图像滤波?
下午好在第一阶段,在卷积神经网络(输入层)的输入上,我们接收一个源图像(因此是手写英文字母的图像)。首先,我们使用一个从左到右的nxn窗口来扫描图像并在内核(卷积矩阵)上乘法来构建特征映射?但没有人写过内核应该具有什么样的精确值(换句话说,我应该将从n*n窗口检索到的数据相乘到什么样的内核值)。是否适合在这个用于边缘检测的卷积核上乘以数据?有许多卷积核(浮雕、高斯滤波器、边缘检测、角度检测等)?但
根据文档网站(https://keras.io/layers/convolutional/)keras卷积层的内核大小定义为高度x宽度: kernel\u size:一个整数或2个整数的元组/列表,指定2D卷积窗口的高度和宽度。可以是单个整数,以便为所有空间标注指定相同的值。 然而,在代码文档中,其定义正好相反: kernel_size:2个整数的整数或元组/列表,指定2D卷积窗口的宽度和高度。可
我一直在从头开始创建卷积神经网络,对于如何对待隐藏卷积层的内核大小有点困惑。例如,假设我有一个图像作为并将其通过以下层。 卷积层,kernel_size=(5,5)并具有32个输出通道 吞吐量的新维度=(32,28,28) null 由于最初的输入是二维图像,我不知道如何对隐藏层进行卷积,因为现在的输入是三维的。
本文向大家介绍什么是卷积?相关面试题,主要包含被问及什么是卷积?时的应答技巧和注意事项,需要的朋友参考一下 对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。