我读过这篇文章“UFLDF”,它发展了autoencoder中隐藏层的可视化,但我很困惑如何可视化卷积神经网络的滤波器。在我看来,对于第一个卷积层,要使滤波器可视化,它需要这个等式:
对于第二个卷积层,它应该将滤波器投射到原始输入空间,但我不知道如何做。
在卷积神经网络中,卷积核的可视化与滤波器的可视化是一样的。你提到的方程中唯一需要除法器的是归一化。所以需要它只是为了更好的可视化。
如果您想要可视化第二卷积层过滤器,您可以只做相同的操作。您可能还希望将这些筛选器投影到输入空间上可视化。在这种情况下,您需要计算第二层的所有过滤器与第一层的所有过滤器的卷积。这应该是“完全”卷积。如果您有中间池层,则应相应地取消筛选器的池。
因此,例如,考虑具有以下配置的conv网络:1)C层:1个32x32大小的输入,6个5x5大小的核;2)2x2比率的子采样层;3)C层:6个14x14大小的输入(由于卷积和池化)和16个7x7大小的核;4)……一些其他更高层
创建卷积神经网络(CNN)时(如中所述https://cs231n.github.io/convolutional-networks/)输入层与一个或多个过滤器连接,每个过滤器表示一个要素地图。这里,过滤层中的每个神经元只与输入层的几个神经元相连。在最简单的情况下,我的n个过滤器中的每一个都具有相同的维度并使用相同的步幅。 我的问题是: 如何确保过滤器学习不同的特征,尽管它们使用相同的补丁进行训练
主要问题 我无法理解特定图层的权重图。我使用了一种“无学习”的方法: 我用千层面作为我的神经网络库。 情节很好,但我不知道该怎么解释。 神经网络结构 im使用的结构: 以下是前3层的权重: **关于图片** 所以对我来说,它们看起来是随机的,我无法解释它们! 然而,在Cs231上,它说: Conv/FC过滤器。第二种常见策略是将权重可视化。这些通常在第一个CONV层上最容易解释,该层直接查看原始像
此问题似乎与在帮助中心定义的范围内编程无关。 我不明白为什么在使用卷积神经网络时需要翻转滤波器。 根据千层面文件, flip_filters:bool(默认值:True) 是在将过滤器滑动到输入上之前翻转过滤器,执行卷积(这是默认设置),还是不翻转过滤器并执行相关。请注意,对于千层面中的其他一些卷积层,翻转会产生开销,默认情况下是禁用的–使用从其他层学习的权重时,请查看文档。 这是什么意思?我从未
该脚本可以在几分钟内在 CPU 上运行完。 结果示例: from __future__ import print_function import time import numpy as np from PIL import Image as pil_image from keras.preprocessing.image import save_img from keras import la
注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验。 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组大小为32x32的RGB图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 想了解更多信息请参考CIFAR-10 page,以及Alex Kriz
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络