下面是我想用R做的算法:
ARIMA
模型到ARIMA模拟10个时间序列数据集。sim()
功能2s
,3s
,4s
,5s
,6s
,7s
,8s
,和9s
auto从每个块尺寸的子系列中获得最佳ARIMA
模型。arima()
函数
RMSE
下面的R
函数可以完成此操作。
## Load packages and prepare multicore process
library(forecast)
library(future.apply)
plan(multisession)
library(parallel)
library(foreach)
library(doParallel)
n_cores <- detectCores()
cl <- makeCluster(n_cores)
registerDoParallel(cores = detectCores())
## simulate ARIMA(1,0, 0)
#n=10; phi <- 0.6; order <- c(1, 0, 0)
bootstrap1 <- function(n, phi){
ts <- arima.sim(n, model = list(ar=phi, order = c(1, 0, 0)), sd = 1)
########################################################
## create a vector of block sizes
t <- length(ts) # the length of the time series
lb <- seq(n-2)+1 # vector of block sizes to be 1 < l < n (i.e to be between 1 and n exclusively)
########################################################
## This section create matrix to store block means
BOOTSTRAP <- matrix(nrow = 1, ncol = length(lb))
colnames(BOOTSTRAP) <-lb
########################################################
## This section use foreach function to do detail in the brace
BOOTSTRAP <- foreach(b = 1:length(lb), .combine = 'cbind') %do%{
l <- lb[b]# block size at each instance
m <- ceiling(t / l) # number of blocks
blk <- split(ts, rep(1:m, each=l, length.out = t)) # divides the series into blocks
######################################################
res<-sample(blk, replace=T, 10) # resamples the blocks
res.unlist <- unlist(res, use.names = FALSE) # unlist the bootstrap series
train <- head(res.unlist, round(length(res.unlist) - 10)) # Train set
test <- tail(res.unlist, length(res.unlist) - length(train)) # Test set
nfuture <- forecast::forecast(train, model = forecast::auto.arima(train), lambda=0, biasadj=TRUE, h = length(test))$mean # makes the `forecast of test set
RMSE <- Metrics::rmse(test, nfuture) # RETURN RMSE
BOOTSTRAP[b] <- RMSE
}
BOOTSTRAPS <- matrix(BOOTSTRAP, nrow = 1, ncol = length(lb))
colnames(BOOTSTRAPS) <- lb
BOOTSTRAPS
return(list(BOOTSTRAPS))
}
调用函数
bootstrap1(10, 0.6)
我得到以下结果:
## 2 3 4 5 6 7 8 9
## [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
我想按时间顺序重复上面的步骤1
到步骤4
,然后我想到了R
中的Monte Carlo
技术。因此,我加载它的包并运行以下函数:
param_list=list("n"=10, "phi"=0.6)
library(MonteCarlo)
MC_result<-MonteCarlo(func = bootstrap1, nrep=3, param_list = param_list)
希望在矩阵
表格中得到如下结果:
## [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
## [2,] 0.8909836 0.8457537 1.095148 0.8918468 0.8913282 0.7894167 0.8911484 0.8694729
## [3,] 1.586785 1.224003 1.375026 1.292847 1.437359 1.418744 1.550254 1.30784
但我收到以下错误信息:
MonteCarlo错误(func=bootstrap1,nrep=3,param_list=param_list):func必须返回一个包含命名组件的列表。每个组件都必须是标量。
我如何才能找到获得上述预期结果的方法,并使结果重现?
之所以会出现此错误消息,是因为MonteCarlo希望bootstrap1()
为模拟接受一个参数组合,并且每次复制只返回一个值(RMSE
)。这里的情况并非如此,因为块长度(lb
)是由bootstrap1
中模拟的时间序列(n
)的长度决定的,因此您将得到每个调用的n-2
块长度的结果。
解决方案是将块长度作为参数传递,并适当重写bootstrap1()
:
library(MonteCarlo)
library(forecast)
library(Metrics)
# parameter grids
n <- 10 # length of time series
lb <- seq(n-2) + 1 # vector of block sizes
phi <- 0.6 # autoregressive parameter
reps <- 3 # monte carlo replications
# simulation function
bootstrap1 <- function(n, lb, phi) {
#### simulate ####
ts <- arima.sim(n, model = list(ar = phi, order = c(1, 0, 0)), sd = 1)
#### devide ####
m <- ceiling(n / lb) # number of blocks
blk <- split(ts, rep(1:m, each = lb, length.out = n)) # divide into blocks
#### resample ####
res <- sample(blk, replace = TRUE, 10) # resamples the blocks
res.unlist <- unlist(res, use.names = FALSE) # unlist the bootstrap series
#### train, forecast ####
train <- head(res.unlist, round(length(res.unlist) - 10)) # train set
test <- tail(res.unlist, length(res.unlist) - length(train)) # test set
nfuture <- forecast(train, # forecast
model = auto.arima(train),
lambda = 0, biasadj = TRUE, h = length(test))$mean
### metric ####
RMSE <- rmse(test, nfuture) # return RMSE
return(
list("RMSE" = RMSE)
)
}
param_list = list("n" = n, "lb" = lb, "phi" = phi)
要运行模拟,请将参数以及bootstrap1()传递给MonteCarlo()。要并行进行模拟,您需要通过ncpus
设置内核数。MonteCarlo软件包使用Snow Fall,因此它应该在Windows上运行。
注意,我还设置了raw=T
(否则结果将是所有复制的平均值)。预先设定种子将使结果重现。
set.seed(123)
MC_result <- MonteCarlo(func = bootstrap1,
nrep = reps,
ncpus = parallel::detectCores() - 1,
param_list = param_list,
export_also = list(
"packages" = c("forecast", "Metrics")
),
raw = T)
结果是一个数组。我认为最好将其转换为数据。帧通过MakeFrame()
:
Frame <- MakeFrame(MC_result)
不过,很容易得到一个reps x lb
矩阵:
matrix(Frame$RMSE, ncol = length(lb), dimnames = list(1:reps, lb))
我试图模拟来自rho=0.7的AR(1)模型的数据(Y)。然后我将使用这些数据在截距上运行Y的回归(通过这样做,参数估计成为Y的平均值),然后使用鲁棒的标准错误。我想对这个假设运行一个蒙特卡罗模拟,使用2000次重复不同的滞后值。目的是显示当滞后变化时Newey West估计器的有限样本性能 我的问题是:上面的代码是进行这种模拟的正确方法吗?如果是,我如何得到一个代码来重复这个过程在HAC测试中的
我正在写一个蒙特卡罗模拟来检查有多少次y不是紧挨着另一个y。我变出了一个40 x和10 y的向量,放置在向量中的随机位置。我的目标是计算向量中没有任何相邻y的概率。以下是我尝试过的: 结果是一个非常小的数字,这对我来说似乎没有意义。
从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo Simulation,简称MC)和马尔科夫链(Markov Chain ,也简称MC)。要弄懂MCMC的原理我们首先得搞清楚蒙特卡罗方法和马尔科夫链的原理。我们将用三篇来完整学习MCMC。在本篇,我们关注于蒙特卡罗方法。 2. 蒙特卡罗方法引入 蒙特卡罗原来是一个赌场的名称,用它作为名字大概是因为蒙特卡罗方法是一种
问题内容: 我已经为“ 2d有效ising模型”编写了蒙特卡洛模拟,并且试图改善运行时间。 我的代码做什么:我为每个粒子(rgrid和mgrid)创建一个用于粒子数量(r)的矩阵和一个用于磁化强度的矩阵。粒子的自旋可以是-1/1,因此磁化强度范围为[-r,r],步长为2。 然后选择一个随机点和一个随机粒子(+1或-1)。由于概率取决于每个位置的正/负粒子数量,因此我创建了2个数组并将其压缩,这样我
我有以下型号 在此处输入图像描述 我需要使用蒙特卡洛实验并获得统计数据。一个例子应该是。 在此处输入图像描述 但在运行时,图形上不会显示任何内容。如何将此统计数据链接到模型?
利用伪随机数生成器(PRNG)对排队型系统进行蒙特卡罗模拟。我使用System.random,因为它速度快,但发现它在后续的绘制之间有某种怪异的相关性,干扰了结果(不够随机)。 现在我使用的是Mersenne Twister(http://takel.jp/mt/mersennetwister.cs),它(到目前为止)已经证明对我的目的来说是足够随机的。它慢了50%,但那是我愿意付出的代价,以得到