我想在Spark中做累积和。以下是注册表(输入):
+---------------+-------------------+----+----+----+
| product_id| date_time| ack|val1|val2|
+---------------+-------------------+----+----+----+
|4008607333T.upf|2017-12-13:02:27:01|3-46| 53| 52|
|4008607333T.upf|2017-12-13:02:27:03|3-47| 53| 52|
|4008607333T.upf|2017-12-13:02:27:08|3-46| 53| 52|
|4008607333T.upf|2017-12-13:02:28:01|3-47| 53| 52|
|4008607333T.upf|2017-12-13:02:28:07|3-46| 15| 1|
+---------------+-------------------+----+----+----+
配置单元查询:
select *, SUM(val1) over ( Partition by product_id, ack order by date_time rows between unbounded preceding and current row ) val1_sum, SUM(val2) over ( Partition by product_id, ack order by date_time rows between unbounded preceding and current row ) val2_sum from test
输出:
+---------------+-------------------+----+----+----+-------+--------+
| product_id| date_time| ack|val1|val2|val_sum|val2_sum|
+---------------+-------------------+----+----+----+-------+--------+
|4008607333T.upf|2017-12-13:02:27:01|3-46| 53| 52| 53| 52|
|4008607333T.upf|2017-12-13:02:27:08|3-46| 53| 52| 106| 104|
|4008607333T.upf|2017-12-13:02:28:07|3-46| 15| 1| 121| 105|
|4008607333T.upf|2017-12-13:02:27:03|3-47| 53| 52| 53| 52|
|4008607333T.upf|2017-12-13:02:28:01|3-47| 53| 52| 106| 104|
+---------------+-------------------+----+----+----+-------+--------+
使用火花逻辑,我得到相同的输出:
import org.apache.spark.sql.expressions.Window
val w = Window.partitionBy('product_id, 'ack).orderBy('date_time)
import org.apache.spark.sql.functions._
val newDf = inputDF.withColumn("val_sum", sum('val1) over w).withColumn("val2_sum", sum('val2) over w)
newDf.show
然而,当我在spark cluster上尝试这个逻辑时,val_sum
的值将是累积和的一半,有时它是不同的。我不知道为什么它会发生在spark cluster上。是因为分区吗?
如何计算spark cluster上一列的累积和?
要使用DataFrame API获得累计和,应使用rowsBetween
window方法。在Spark 2.1及更新版本中,按如下方式创建窗口:
val w = Window.partitionBy($"product_id", $"ack")
.orderBy($"date_time")
.rowsBetween(Window.unboundedPreceding, Window.currentRow)
这将告诉Spark使用从分区开始到当前行的值。使用旧版本的Spark,使用rowsBetween(Long.MinValue,0)
获得相同的效果。
要使用该窗口,请使用与之前相同的方法:
val newDf = inputDF.withColumn("val_sum", sum($"val1").over(w))
.withColumn("val2_sum", sum($"val2").over(w))
我尝试过用这个方法来计算累积值,但是如果日期字段与累积字段中的值相同,那么有人能提出类似于这个问题的解决方案吗
问题内容: 上面的选择向我返回了以下内容。 我如何获得以下信息: 问题答案: SQL Fiddle示例 输出 编辑:这是一个通用的解决方案,将可在大多数数据库平台上使用。如果您的特定平台(例如gareth的)有更好的解决方案,请使用它!
一些脚本在工作时什么也不做,当我手动运行它们时,其中一个失败了,出现了以下消息: 错误SparkUI:未能绑定SparkUI java.net.bindexception:地址已在使用:服务“SparkUI”在重试16次后失败! 所以我想知道是否有一种特定的方法来并行运行脚本?
我想了解以下关于火花概念的RDD的事情。 > RDD仅仅是从HDFS存储中复制某个节点RAM中的所需数据以加快执行的概念吗? 如果一个文件在集群中被拆分,那么对于单个flie来说,RDD从其他节点带来所有所需的数据? 如果第二点是正确的,那么它如何决定它必须执行哪个节点的JVM?数据局部性在这里是如何工作的?
我想从Spark v.1.6(使用scala)数据帧创建一个JSON。我知道有一个简单的解决方案,就是做。 但是,我的问题看起来有点不同。例如,考虑具有以下列的数据帧: 我想在最后有一个数据帧 其中C是包含、、的JSON。不幸的是,我在编译时不知道数据框是什么样子的(除了始终“固定”的列和)。 至于我需要这个的原因:我使用Protobuf发送结果。不幸的是,我的数据帧有时有比预期更多的列,我仍然会
我试图从聚合原理的角度来理解火花流。Spark DF 基于迷你批次,计算在特定时间窗口内出现的迷你批次上完成。 假设我们有数据作为- 然后首先对Window_period_1进行计算,然后对Window_period_2进行计算。如果我需要将新的传入数据与历史数据一起使用,比如说Window_priod_new与Window_pperid_1和Window_perid_2的数据之间的分组函数,我该