当前位置: 首页 > 知识库问答 >
问题:

如何使用Tensorflow张量设置函数模型的Keras层的输入?

孔理
2023-03-14

我想使用两个包,一个用Keras1.2编写,另一个用TensorFlow编写。我想将构建在tensorflow中的体系结构的一部分用于Keras模型。

这里提出了一个部分的解决方案,但它是针对顺序模型的。关于功能模型的建议--将预处理包装在一个Lambda层中--没有奏效。

inp = Input(shape=input_shape)
def ID(x):
    return x
lam = Lambda(ID)  
flatten = Flatten(name='flatten')
output = flatten(lam(inp))
Model(input=[inp], output=output)

共有1个答案

夏侯腾
2023-03-14

您可以尝试将您的输入张量包装到Keras输入层,然后从那里继续构建您的模型。像这样:

inp = Input(tensor=tftensor,shape=input_shape)
def ID(x):
    return x
lam = Lambda(ID)  
flatten = Flatten(name='flatten')
output = flatten(lam(inp))
Model(input=inp, output=output)
 类似资料:
  • 问题内容: 我在Keras的最后一层中使用一些tensorflow函数(reduce_sum和l2_normalize)构建模型,而遇到此问题。我一直在寻找解决方案,但所有解决方案都与“ Keras张量”有关。 这是我的代码: 然后是错误: ValueError:模型的输出张量必须是TensorFlow的输出(因此保留过去的层元数据)。找到:Tensor(“ l2_normalize_3:0”,s

  • /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/checkpointable/base.py in_method_wrapper(self,*args,**kwargs)362 self._setattr_tracking=False#pylint:disable=protected-access 363 try:

  • 问题内容: 在Keras中创建顺序模型时,我知道您在第一层中提供了输入形状。然后,此输入形状会构成 隐式 输入层吗? 例如,下面的模型明确指定了2个密集层,但这实际上是一个3层模型,即由输入形状隐含的一个输入层,一个具有32个神经元的隐藏密集层,然后一个具有10个可能输出的输出层组成的模型吗? 问题答案: 好吧,实际上它实际上 是 一个隐式输入层,即您的模型是一个具有三层“输入,隐藏和输出”的“老

  • 根据keras文件(https://keras.io/layers/convolutional/)Conv1D输出张量的形状为(batch\u size,new\u steps,filters),而输入张量的形状为(batch\u size,steps,input\u dim)。我不明白这是怎么回事,因为这意味着如果你传递一个长度为8000的1d输入,其中batch\u size=1,steps=

  • 我一直在尝试使用Keras构建一个多输入模型。我来自使用顺序模型,并且只有一个相当直接的输入。我一直在查看StackOverflow上的留档(https://keras.io/getting-started/functional-api-guide/)和一些答案(如何在Keras 2.0中“合并”顺序模型?)。基本上,我想要的是让两个输入训练一个模型。一个输入是一段文本,另一个是从该文本中提取的一

  • Tensorflow 1.12发行说明指出:“Keras模型现在可以直接导出为SavedModel格式(tf.contrib.saved_model.save_Keras_mode()),并与Tensorflow服务一起使用。”。所以我试了一下- 我用一行代码导出了一个简单的模型。但是,Tensorflow服务不识别模型。我猜问题出在docker调用上,可能是模型定义中缺少了“signature_