给出了一个边上具有任意权的有向无环图和两个特定结点s和t,其中s的内度和t的外度为0。如何确定成本为正的s到t的最短路径?
使用修改的Bellman-Ford,如果得到的最短路径代价<0,则从图中删除边,直到达到代价(即不<0)。
给出了一个图G=(V,E),它是正加权的,有向的,无圈的。我设计了一个在O(k(m+n))中运行的算法,用于报告从s到T的k-边最短路径。k-边最短路径定义为从s到t的具有k条边的路径,并且对于从s到t的所有路径,该路径的总权也必须是最小的。 由于BFS不能单独用于寻找最短路径(除非权重相等),我认为运行时间意味着使用BFS寻找具有k条边的路径。让我感到困惑的是k,因为我认为它意味着表演BFS k
在正加权有向无环图中,我有一个求最短路径的问题,但有最大N步(路径中的边)的限制。假定路径存在。图的另一个性质是,如果边(i,j)在图中,那么对于i 例如,考虑下图。 问题是最多使用k=3步(边)来寻找最短路径。答案是6(路径1->4->5->6)。
给出了一个有向无环图G=(V,E),如果需要,可以假定它是拓扑有序的。G中的边有两种类型的成本--名义成本w(e)和尖峰成本p(e)。 目标是找到从节点s到节点t的最短路径,使以下代价最小:sum_e(w(e))+max_e(p(e)),其中和和最大值在路径的所有边上取值。 标准动态规划方法表明,该问题在O(e^2)时间内是可解的。有没有更高效的办法解决?理想情况下,一个O(E*polylog(E
我有一个有圈的有向图。所有边都是加权的,权重可以是负值。可能会有负循环。
在一个加权有向图中,我需要找到两个结点s,t之间的最短路径。以下是限制: 权重可以为负值。 路径必须经过一个特定的边,让我们从节点u到V调用her e和shes。 输出路径必须简单,即我们只通过一个节点一次。 因为我希望它最短,所以我将检查在从s到u之前从v到t运行bellman ford是否比相反的方式更快(如果有节点,两个节点都使用where是放置它的最佳位置)。 谢谢你的帮助!