当前位置: 首页 > 知识库问答 >
问题:

Python matlibplot无法构建烛台

司寇羽
2023-03-14

我一直试图建立一个既有烛台又有ichimoku的图表(此外,我还想在图表上绘制支撑和阻力线、通道、谐波模式等)。我已经得到了各种资源的帮助...

我已经建立了两个脚本,一个可以建立RSI和MACD烛台图表。第二个可以构建ichimoku(Python/API计算ichimoku图表组件)。

第一稿

# THIS VERSION IS FOR PYTHON 3 #
import urllib.request, urllib.error, urllib.parse
import time
import datetime
import numpy as np
from datetime import timedelta
import pandas as pd

import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
#from matplotlib.finance import candlestick_ohlc
from mpl_finance import candlestick_ohlc
import matplotlib
import pylab
matplotlib.rcParams.update({'font.size': 9})

def rsiFunc(prices, n=14):
    deltas = np.diff(prices)
    seed = deltas[:n+1]
    up = seed[seed>=0].sum()/n
    down = -seed[seed<0].sum()/n
    rs = up/down
    rsi = np.zeros_like(prices)
    rsi[:n] = 100. - 100./(1.+rs)

    for i in range(n, len(prices)):
        delta = deltas[i-1] # cause the diff is 1 shorter

        if delta>0:
            upval = delta
            downval = 0.
        else:
            upval = 0.
            downval = -delta

        up = (up*(n-1) + upval)/n
        down = (down*(n-1) + downval)/n

        rs = up/down
        rsi[i] = 100. - 100./(1.+rs)

    return rsi

def movingaverage(values,window):
    weigths = np.repeat(1.0, window)/window
    smas = np.convolve(values, weigths, 'valid')
    return smas # as a numpy array


def ExpMovingAverage(values, window):
    weights = np.exp(np.linspace(-1., 0., window))
    weights /= weights.sum()
    a =  np.convolve(values, weights, mode='full')[:len(values)]
    a[:window] = a[window]
    return a


def computeMACD(x, slow=26, fast=12):
    """
    compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
    return value is emaslow, emafast, macd which are len(x) arrays
    """
    emaslow = ExpMovingAverage(x, slow)
    emafast = ExpMovingAverage(x, fast)
    return emaslow, emafast, emafast - emaslow


def bytespdate2num(fmt, encoding='utf-8'):
    strconverter = mdates.strpdate2num(fmt)
    def bytesconverter(b):
        s = b.decode(encoding)
        return strconverter(s)
    return bytesconverter

def graphData(stock,MA1,MA2):
    filepath = 'S:/Perl64/lambda/Litmus/data/daily/' + stock + '.csv'
    print ('filepath = ' + filepath)
    try:
        with open(filepath) as f:
            lines = (line for line in f if not line.startswith('D'))
            date, openp, highp, lowp, closep, volume = np.loadtxt(lines,delimiter=',', unpack=True,
                                                              converters={ 0: bytespdate2num('%Y-%m-%d')})
        x = 0
        y = len(date)
        newAr = []


        while x < y:
            appendLine = date[x],openp[x],highp[x],lowp[x],closep[x],volume[x]
            print (appendLine)
            newAr.append(appendLine)
            x+=1

        #Av1 = movingaverage(closep, MA1)
        #Av2 = movingaverage(closep, MA2)

        SP = len(date[MA2-1:])

        fig = plt.figure(figsize=(14,8))

        ax1 = plt.subplot2grid((6,4), (1,0), rowspan=4, colspan=4)
        candlestick_ohlc(ax1, newAr[-SP:], width=.5, colorup='#ff1717', colordown='#53c156')

        #Label1 = str(MA1)+' SMA'
        #Label2 = str(MA2)+' SMA'

        #ax1.plot(date[-SP:],Av1[-SP:],'blue',label=Label1, linewidth=1.5)
        #ax1.plot(date[-SP:],Av2[-SP:],'orange',label=Label2, linewidth=1.5)

        ax1.grid(True, color='#E8E8E8')
        ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
        ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
        ax1.yaxis.label.set_color("w")
        ax1.spines['bottom'].set_color("#E8E8E8")
        ax1.spines['top'].set_color("#E8E8E8")
        ax1.spines['left'].set_color("#E8E8E8")
        ax1.spines['right'].set_color("#E8E8E8")
        ax1.tick_params(axis='y', colors='black')
        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
        ax1.tick_params(axis='x', colors='black')
        plt.ylabel('Stock price and Volume',color='black')

        # --- legends
        #maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
        #           fancybox=True, borderaxespad=0.)
        #maLeg.get_frame().set_alpha(0.4)
        #textEd = pylab.gca().get_legend().get_texts()
        #pylab.setp(textEd[0:5], color = 'b')

        volumeMin = 0

        ax0 = plt.subplot2grid((6,4), (0,0), sharex=ax1, rowspan=1, colspan=4) #axisbg='#07000d'
        rsi = rsiFunc(closep)
        rsiCol = 'black'
        posCol = '#386d13'
        negCol = '#8f2020'

        ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
        ax0.axhline(70, color=negCol)
        ax0.axhline(30, color=posCol)
        ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
        ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
        ax0.set_yticks([30,70])
        ax0.yaxis.label.set_color("w")
        ax0.spines['bottom'].set_color("#7F7F7F")
        ax0.spines['top'].set_color("#7F7F7F")
        ax0.spines['left'].set_color("#7F7F7F")
        ax0.spines['right'].set_color("#7F7F7F")
        ax0.tick_params(axis='y', colors='black')
        ax0.tick_params(axis='x', colors='black')
        plt.ylabel('RSI', color='b')

        ax1v = ax1.twinx()
        ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#7F7F7F', alpha=.4)
        ax1v.axes.yaxis.set_ticklabels([])
        ax1v.grid(False)
        ###Edit this to 3, so it's a bit larger
        ax1v.set_ylim(0, 3*volume.max())
        ax1v.spines['bottom'].set_color("#7F7F7F")
        ax1v.spines['top'].set_color("#7F7F7F")
        ax1v.spines['left'].set_color("#7F7F7F")
        ax1v.spines['right'].set_color("#7F7F7F")
        ax1v.tick_params(axis='x', colors='black')
        ax1v.tick_params(axis='y', colors='black')
        ax2 = plt.subplot2grid((6,4), (5,0), sharex=ax1, rowspan=1, colspan=4) #axisbg='#07000d'
        fillcolor = '#7F7F7F'
        nslow = 26
        nfast = 12
        nema = 9
        emaslow, emafast, macd = computeMACD(closep)
        ema9 = ExpMovingAverage(macd, nema)
        ax2.plot(date[-SP:], macd[-SP:], color='blue', lw=1)
        ax2.plot(date[-SP:], ema9[-SP:], color='red', lw=1)
        ax2.fill_between(date[-SP:], macd[-SP:]-ema9[-SP:], 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)

        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
        ax2.spines['bottom'].set_color("#7F7F7F")
        ax2.spines['top'].set_color("#7F7F7F")
        ax2.spines['left'].set_color("#7F7F7F")
        ax2.spines['right'].set_color("#7F7F7F")
        ax2.tick_params(axis='x', colors='black')
        ax2.tick_params(axis='y', colors='black')
        plt.ylabel('MACD', color='black')
        ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
        for label in ax2.xaxis.get_ticklabels():
            label.set_rotation(30)

        plt.suptitle(stock.upper(),color='black')
        plt.setp(ax0.get_xticklabels(), visible=False)
        plt.setp(ax1.get_xticklabels(), visible=False)

        plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
        #plt.show()
        print ("File saved")
        fig.savefig('example.png',facecolor=fig.get_facecolor())

    except Exception as e:
        print('main loop',str(e))

graphData('RELIANCE',20,50)

第二稿

import re
import time
import datetime
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_finance import candlestick_ohlc
import pylab

def bytespdate2num(fmt, encoding='utf-8'):
    strconverter = mdates.strpdate2num(fmt)
    def bytesconverter(b):
        s = b.decode(encoding)
        return strconverter(s)
    return bytesconverter


filepath = 'S:/Perl64/lambda/Litmus/data/daily/TATASTEEL.csv'
df = pd.read_csv(filepath, header=0)
df.columns = ["Date", "Open", "High", "Low", "Close", "Volume"]
df = df.reset_index(drop=True)
df = df.set_index("Date", inplace = False)
df.sort_index(inplace=True) ## Sort in chronological order or as earlier dates first
df = df.tail(250)

CL_period = 9 # length of Tenkan Sen or Conversion Line
BL_period = 26 # length of Kijun Sen or Base Line
Lead_span_B_period = 52 # length of Senkou Sen B or Leading Span B
Lag_span_period = 52 # length of Chikou Span or Lagging Span

# add to the dataframe, different components of the Ichimoku
# use shift function to shift a time series forward by the given value
high_9 = df['High'].rolling(window=CL_period).max()
low_9 = df['Low'].rolling(window=CL_period).min()
df['Conv_line'] = (high_9 + low_9) /2

high_26 = df['High'].rolling(window=BL_period).max()
low_26 = df['Low'].rolling(window=BL_period).min()
df['Base_line'] = (high_26 + low_26) /2

df['SpanA'] = ((df['Conv_line'] + df['Base_line'])/2)
#df['SpanA'] = df['SpanA'].shift(26)

high_52 = df['High'].rolling(window=Lead_span_B_period).max()
low_52 = df['Low'].rolling(window=Lead_span_B_period).min()
df['SpanB'] = (high_52 + low_52)/2
#df['SpanB'] = df['SpanB'].shift(26)

df['Lagging_span'] = df['Close']
#df.dropna(inplace=True) # drop NA values from Dataframe

# plot the data using matplotlib's functionality
#add figure and axis objects
fig,ax = plt.subplots(1,1,sharex=True,figsize = (14,8)) #share x axis and set a figure size

fn='S:/Perl64/lambda/scripts/reliance_coi.csv'
df.to_csv(fn, index=1, sep=',', mode='a')

df['Close'] = df['Close'].shift(-26)
ax.plot(df.index, df.Close,linewidth=2) # plot Close with index on x-axis with a line thickness of 4

try:
    #candlestick_ohlc(ax, data.values, width=0.6, colorup='g', colordown='r')
    candlestick_ohlc(ax=ax, opens=df['Open'], highs=df['High'],lows=df['Low'],closes=df['Close'],width=0.4, colorup='#ff1717', colordown='#53c156')
    #candlestick_ohlc(ax, newAr[-SP:], width=.5, colorup='#ff1717', colordown='#53c156')

except Exception as e:
    print('main loop',str(e))

df['Conv_line'] = df['Conv_line'].shift(-26)
ax.plot(df.index, df.Conv_line, color="blue") # Tenken
df['Base_line'] = df['Base_line'].shift(-26)
ax.plot(df.index, df.Base_line, color="red") # Kijun
df['Lagging_span'] = df['Lagging_span'].shift(-52)
ax.plot(df.index, df.Lagging_span, color="grey") # Tenken
ax.plot(df.index, df.SpanA) # plot Lead Span A with index on the shared x-axis
ax.plot(df.index, df.SpanB) # plot Lead Span B with index on the sahred x-axis

# use the fill_between call of ax object to specify where to fill the chosen color
# pay attention to the conditions specified in the fill_between call
ax.fill_between(df.index,df.SpanA,df.SpanB,where = df.SpanA >= df.SpanB, color = 'lightgreen')
ax.fill_between(df.index,df.SpanA,df.SpanB,where = df.SpanA < df.SpanB, color = 'lightcoral')

plt.legend(loc=0) #Let matplotlib choose best location for legend
plt.tight_layout()
#plt.grid() # display the major grid
fig.savefig('ichimoku.png')```

我用的股票价格csv文件在这里

2019-01-01,1125.25,1127.30,1110.10,1121.00,4455850
2019-01-02,1114.50,1127.00,1101.00,1106.40,7144970
2019-01-03,1107.50,1114.60,1090.10,1092.75,7446457
2019-01-04,1097.40,1104.45,1081.10,1098.65,8465141
2019-01-07,1107.00,1118.45,1101.00,1104.75,5513559
2019-01-08,1105.10,1109.95,1096.00,1104.65,5625153
2019-01-09,1112.00,1117.00,1098.70,1110.75,5766805
2019-01-10,1107.75,1111.00,1103.00,1107.50,4080283
2019-01-11,1107.60,1113.80,1088.60,1098.05,6463903
2019-01-14,1095.00,1100.50,1086.40,1096.80,4111782
2019-01-15,1105.00,1132.00,1105.00,1129.65,10062875
2019-01-16,1135.00,1145.00,1130.35,1135.90,6382777
2019-01-17,1144.45,1147.90,1130.00,1134.45,7487963
2019-01-18,1148.80,1189.90,1135.25,1184.35,25684142
2019-01-21,1194.00,1239.95,1188.65,1237.70,22038534
2019-01-22,1232.85,1246.95,1219.60,1235.15,16552819
2019-01-23,1233.30,1244.20,1222.00,1226.30,8829502
2019-01-24,1225.00,1253.20,1220.10,1247.45,13155185
2019-01-25,1250.45,1264.70,1235.40,1246.00,8550836
2019-01-28,1250.50,1255.95,1222.40,1229.55,8569265
2019-01-29,1231.00,1231.65,1201.35,1210.65,9328866
2019-01-30,1215.00,1225.00,1191.10,1195.70,7846940
2019-01-31,1202.00,1229.70,1201.00,1227.15,10185347
2019-02-01,1234.00,1255.00,1227.05,1249.95,9228965
2019-02-04,1247.00,1296.95,1242.05,1290.90,11670570
2019-02-05,1292.00,1304.40,1278.60,1291.55,9362406
2019-02-06,1296.25,1317.65,1294.25,1310.25,9411585
2019-02-07,1310.25,1321.20,1286.10,1290.40,9212227
2019-02-08,1284.80,1300.50,1272.25,1277.70,6505502
2019-02-11,1275.90,1276.00,1251.00,1253.25,7523999
2019-02-12,1251.50,1272.35,1251.50,1256.40,6399485
2019-02-14,1241.00,1241.00,1218.00,1224.20,6627360
2019-02-15,1229.75,1249.90,1214.00,1244.45,9597961
2019-02-18,1250.00,1252.50,1215.00,1220.10,9649017
2019-02-19,1218.00,1239.70,1211.20,1216.10,6244189
2019-02-20,1223.85,1240.00,1219.00,1234.35,6298179
2019-02-21,1236.00,1257.80,1229.35,1246.90,10580178
2019-02-22,1244.60,1245.30,1226.00,1232.35,8755865
2019-02-25,1236.00,1243.00,1220.65,1232.30,7852528
2019-02-26,1209.50,1234.80,1206.00,1220.25,10131050
2019-02-27,1228.05,1244.90,1209.00,1223.50,11113182
2019-02-28,1233.75,1239.85,1226.55,1231.05,11286916
2019-03-01,1237.00,1242.35,1222.25,1226.05,7922513
2019-03-05,1223.40,1239.80,1218.60,1237.65,7121509
2019-03-06,1239.80,1273.10,1235.10,1264.80,12038231
2019-03-07,1264.00,1279.80,1258.15,1270.25,8109259
2019-03-08,1266.05,1274.45,1262.00,1267.10,6040052
2019-03-11,1270.05,1312.00,1268.00,1304.10,9718840
2019-03-12,1316.90,1334.00,1314.25,1331.35,11228736
2019-03-13,1337.00,1360.00,1328.10,1347.30,11236048
2019-03-14,1349.75,1362.00,1336.10,1341.55,10402048
2019-03-15,1345.00,1358.80,1311.20,1321.65,15893093
2019-03-18,1331.00,1357.95,1329.00,1350.05,10105234
2019-03-19,1360.00,1380.00,1343.10,1376.55,9805318
2019-03-20,1377.80,1388.00,1364.00,1375.45,9892823
2019-03-22,1372.50,1380.90,1336.70,1341.75,11465112
2019-03-25,1330.60,1336.85,1316.70,1324.45,7951992
2019-03-26,1330.30,1371.60,1330.00,1367.25,9479288
2019-03-27,1377.95,1377.95,1344.25,1349.25,10094174
2019-03-28,1350.25,1369.80,1342.80,1360.00,10482938
2019-04-01,1370.00,1406.80,1362.55,1391.85,10098281
2019-04-02,1398.00,1403.10,1380.10,1389.70,8012636
2019-04-03,1392.75,1403.00,1372.00,1375.20,7849461
2019-04-04,1379.00,1383.70,1347.25,1353.05,8375674
2019-04-05,1360.95,1363.90,1343.00,1353.90,6728239
2019-04-08,1356.00,1357.50,1323.70,1329.25,8723577
2019-04-09,1328.90,1340.70,1321.00,1334.45,9497621
2019-04-10,1337.95,1348.00,1326.50,1331.40,7612711
2019-04-11,1332.95,1353.00,1329.00,1346.80,5741333
2019-04-12,1350.00,1356.90,1336.65,1343.10,5919742
2019-04-15,1345.00,1348.95,1335.00,1340.15,4245127
2019-04-16,1345.00,1360.00,1340.00,1343.75,7936553
2019-04-18,1375.00,1389.75,1365.00,1385.95,17960482
2019-04-22,1360.00,1367.00,1341.30,1345.35,10792748
2019-04-23,1348.00,1373.00,1346.00,1363.85,9055300
2019-04-24,1370.30,1394.80,1366.25,1389.50,7360887
2019-04-25,1389.10,1412.40,1362.60,1372.40,13929820
2019-04-26,1375.00,1395.95,1370.70,1392.80,6889444
2019-04-30,1396.40,1396.40,1366.80,1392.80,10217019
2019-05-02,1392.00,1413.90,1382.10,1405.05,8682505
2019-05-03,1407.95,1417.50,1402.65,1408.85,6510169
2019-05-06,1398.00,1402.80,1378.10,1384.90,7237910
2019-05-07,1394.80,1395.00,1340.20,1343.50,8876945
2019-05-08,1340.00,1340.00,1292.20,1299.45,14610543
2019-05-09,1288.80,1288.80,1251.75,1256.45,19507368
2019-05-10,1265.00,1277.70,1245.00,1251.15,11226831
2019-05-13,1247.90,1260.80,1227.50,1232.05,8047801
2019-05-14,1236.50,1269.35,1231.50,1260.45,13001004
2019-05-15,1273.00,1278.00,1250.60,1256.90,11163801
2019-05-16,1259.95,1271.90,1258.10,1265.35,6606652
2019-05-17,1267.00,1276.95,1252.00,1267.40,7898440
2019-05-20,1313.60,1337.70,1303.50,1325.90,12333937
2019-05-21,1332.20,1367.00,1330.05,1339.80,13872055
2019-05-22,1345.65,1359.70,1335.10,1340.40,11287400
2019-05-23,1372.00,1392.00,1325.00,1333.90,17722514
2019-05-24,1348.00,1353.80,1316.50,1336.85,10180759
2019-05-27,1337.10,1337.50,1307.00,1310.65,7349720
2019-05-28,1319.80,1334.80,1313.35,1323.75,19472659
2019-05-29,1321.00,1333.30,1304.15,1313.05,7112830
2019-05-30,1316.25,1342.00,1316.25,1329.75,10740841
2019-05-31,1337.90,1341.90,1320.20,1330.15,11760178
2019-06-03,1335.00,1367.25,1321.20,1360.20,8483610
2019-06-04,1357.45,1374.25,1348.10,1351.65,7059911
2019-06-06,1361.90,1361.90,1321.10,1327.35,7664319
2019-06-07,1325.95,1327.25,1305.60,1314.90,6730595
2019-06-10,1320.90,1327.00,1310.10,1319.15,5380148
2019-06-11,1321.85,1334.50,1318.00,1329.15,5253790
2019-06-12,1334.70,1338.40,1325.00,1332.15,4707716
2019-06-13,1330.00,1334.70,1308.65,1327.25,7171189
2019-06-14,1321.90,1325.00,1309.40,1317.55,6831331
2019-06-17,1320.00,1320.00,1278.50,1282.30,6815554
2019-06-18,1278.90,1287.95,1269.10,1281.00,7679193
2019-06-19,1286.90,1302.00,1262.60,1277.35,6625604
2019-06-20,1280.00,1300.00,1278.00,1296.75,4914012
2019-06-21,1295.95,1296.00,1275.55,1279.50,10623098
2019-06-24,1272.15,1276.45,1257.10,1262.40,5150998
2019-06-25,1258.90,1298.00,1254.25,1295.85,6842363
2019-06-26,1291.00,1304.60,1286.35,1294.15,5299942
2019-06-27,1293.15,1296.90,1271.00,1274.15,11385972
2019-06-28,1277.10,1282.85,1248.65,1253.10,8659721
2019-07-01,1258.05,1272.65,1246.45,1268.85,6162080
2019-07-02,1273.95,1281.00,1263.30,1278.50,4638751
2019-07-03,1282.90,1286.50,1275.05,1282.55,4026032
2019-07-04,1281.40,1291.00,1280.00,1284.00,4275148
2019-07-05,1285.10,1290.50,1260.00,1263.35,4995344
2019-07-08,1258.00,1268.10,1248.20,1252.05,6404544
2019-07-09,1248.95,1283.50,1245.50,1280.10,8016757
2019-07-10,1280.05,1289.35,1268.70,1278.85,5494315
2019-07-11,1287.00,1289.80,1279.30,1281.55,3935460
2019-07-12,1283.00,1300.00,1278.05,1280.50,7174054
2019-07-15,1285.00,1289.50,1270.35,1276.10,4873164
2019-07-16,1279.95,1294.90,1277.05,1293.00,4604019
2019-07-17,1294.30,1297.00,1280.00,1281.85,4334958
2019-07-18,1282.00,1286.40,1258.00,1261.85,5459896
2019-07-19,1268.20,1272.95,1242.70,1249.00,7468515
2019-07-22,1251.00,1284.50,1227.30,1280.50,13300153
2019-07-23,1285.00,1293.90,1260.40,1273.55,9287951
2019-07-24,1273.50,1278.80,1253.55,1259.10,6943982
2019-07-25,1264.00,1269.05,1227.00,1231.50,9968545
2019-07-26,1231.50,1242.50,1210.00,1213.80,9320481
2019-07-29,1216.90,1222.00,1205.10,1210.95,8058035
2019-07-30,1213.95,1220.00,1175.95,1180.90,9533344
2019-07-31,1175.75,1185.00,1162.40,1166.25,9705619
2019-08-01,1163.40,1188.20,1150.35,1180.25,10344862
2019-08-02,1175.70,1198.25,1162.10,1184.35,10865385
2019-08-05,1167.00,1167.00,1128.00,1143.35,13897461
2019-08-06,1134.75,1149.60,1122.00,1128.30,13288909
2019-08-07,1126.50,1138.55,1103.10,1109.40,11588879
2019-08-08,1108.35,1158.00,1095.30,1152.35,14262936
2019-08-09,1161.85,1175.50,1152.30,1162.10,10043949
2019-08-13,1233.15,1302.80,1226.00,1274.75,47923444
2019-08-14,1304.00,1304.45,1280.35,1288.25,14487137
2019-08-16,1291.20,1291.80,1273.00,1278.00,10047496
2019-08-19,1281.05,1296.80,1280.00,1292.60,7459859
2019-08-20,1289.80,1292.60,1272.60,1275.95,6843460
2019-08-21,1275.65,1278.65,1266.50,1270.95,4881553
2019-08-22,1270.95,1271.00,1238.90,1246.75,6414937
2019-08-23,1239.00,1284.00,1226.50,1275.85,9741262
2019-08-26,1294.00,1294.00,1259.00,1266.80,8778739
2019-08-27,1285.00,1285.00,1261.20,1274.85,12984396
2019-08-28,1273.75,1281.00,1256.05,1263.30,5305639
2019-08-29,1256.45,1260.25,1235.30,1241.75,8635974
2019-08-30,1245.50,1254.40,1221.00,1248.55,11308120
2019-09-03,1242.25,1243.00,1200.00,1206.40,8563009
2019-09-04,1200.55,1205.25,1186.05,1201.15,15063355
2019-09-05,1206.80,1213.20,1193.30,1198.60,10512763
2019-09-06,1203.00,1229.00,1195.25,1222.50,10600234
2019-09-09,1220.65,1233.00,1213.15,1222.20,5370758
2019-09-11,1222.50,1240.00,1222.50,1234.40,5544468
2019-09-12,1235.00,1240.45,1205.70,1210.35,5431139
2019-09-13,1212.00,1228.50,1206.90,1225.60,5919260
2019-09-16,1189.00,1219.10,1186.10,1210.75,9393731
2019-09-17,1211.00,1211.00,1193.50,1197.45,7150435
2019-09-18,1204.95,1216.30,1197.20,1205.70,6827281
2019-09-19,1207.85,1209.70,1172.65,1179.05,6293454
2019-09-20,1187.95,1269.90,1174.30,1254.35,22019674
2019-09-23,1274.15,1281.00,1235.00,1239.20,9879751
2019-09-24,1243.60,1298.80,1242.75,1278.70,15982067
2019-09-25,1284.00,1295.00,1268.85,1279.55,8316894
2019-09-26,1292.00,1298.80,1283.50,1296.80,8389212
2019-09-27,1292.50,1315.00,1284.00,1309.05,8712980
2019-09-30,1310.00,1335.75,1305.55,1332.25,11549746
2019-10-01,1337.00,1342.00,1293.30,1304.90,8192597
2019-10-03,1286.00,1314.70,1281.30,1311.05,6183107
2019-10-04,1319.90,1328.60,1303.85,1308.10,6853954
2019-10-07,1308.10,1320.80,1301.70,1310.10,4599818
2019-10-09,1308.70,1329.95,1292.50,1324.75,8040938
2019-10-10,1325.00,1369.00,1321.00,1362.75,16003744
2019-10-11,1363.70,1365.60,1336.55,1352.60,7587648
2019-10-14,1364.95,1364.95,1350.85,1358.00,6123412
2019-10-15,1362.50,1370.00,1354.30,1364.15,4422075
2019-10-16,1369.90,1379.65,1363.70,1372.35,8870701
2019-10-17,1375.00,1399.00,1372.00,1396.50,7332464
2019-10-18,1404.00,1427.90,1398.70,1416.35,12856410
2019-10-22,1425.00,1436.85,1403.35,1414.15,12703054
2019-10-23,1416.30,1425.95,1383.15,1392.40,8432964
2019-10-24,1401.00,1441.40,1386.55,1436.45,10351384
2019-10-25,1441.10,1441.45,1411.25,1431.20,6190013
2019-10-29,1445.50,1480.00,1442.10,1467.05,11780494
2019-10-30,1480.00,1484.55,1460.30,1479.10,7470723
2019-10-31,1484.00,1489.65,1461.70,1464.35,8898168
2019-11-01,1455.00,1461.80,1441.00,1456.90,6356579
2019-11-04,1465.90,1471.00,1445.10,1457.65,6429329
2019-11-05,1463.10,1468.95,1441.00,1447.30,5799318
2019-11-06,1442.70,1446.45,1428.50,1434.90,6686289
2019-11-07,1435.00,1463.00,1432.20,1458.60,6438749
2019-11-08,1449.00,1459.65,1441.30,1445.50,5494844
2019-11-11,1439.10,1444.25,1422.55,1427.80,5192423
2019-11-13,1430.00,1475.90,1430.00,1472.30,11532364
2019-11-14,1476.00,1481.60,1455.80,1462.75,6518339
2019-11-15,1465.65,1486.80,1463.15,1470.85,7173674
2019-11-18,1472.65,1486.00,1455.40,1459.20,6435097
2019-11-19,1467.00,1514.90,1465.00,1509.75,13795569
2019-11-20,1555.05,1572.40,1543.20,1547.65,19904164
2019-11-21,1545.00,1556.00,1528.55,1537.60,6810577
2019-11-22,1542.10,1569.50,1537.60,1546.50,10218978
2019-11-25,1551.15,1564.80,1551.00,1561.55,6924313
2019-11-26,1568.10,1576.35,1556.00,1560.25,16152137
2019-11-27,1559.95,1575.50,1556.10,1569.85,4408336
2019-11-28,1572.65,1584.15,1563.95,1580.30,6284885
2019-11-29,1581.95,1581.95,1547.85,1551.15,8484822
2019-12-02,1600.00,1614.45,1577.00,1586.50,14275186
2019-12-03,1592.75,1594.00,1572.60,1578.90,5938786
2019-12-04,1573.00,1577.50,1533.75,1552.70,9594828
2019-12-05,1574.00,1579.75,1544.00,1550.85,9117022
2019-12-06,1553.00,1568.00,1541.10,1554.90,5982129
2019-12-09,1556.15,1577.40,1546.50,1572.60,5779807
2019-12-10,1572.05,1573.60,1554.15,1561.95,4650906
2019-12-11,1555.60,1574.50,1550.60,1562.40,5652698
2019-12-12,1570.25,1573.85,1556.65,1568.20,4720977
2019-12-13,1580.00,1590.00,1572.40,1582.90,5791522
2019-12-16,1592.00,1593.90,1564.35,1566.60,5436951
2019-12-17,1566.75,1579.00,1555.55,1562.70,9291724
2019-12-18,1563.00,1580.00,1562.00,1575.85,6739582
2019-12-19,1573.70,1614.90,1571.80,1609.95,9375484
2019-12-20,1615.00,1617.55,1596.10,1599.10,9724619
2019-12-23,1560.10,1577.55,1557.80,1571.40,11478429
2019-12-24,1568.90,1572.05,1542.50,1546.45,8251144
2019-12-26,1541.65,1552.95,1510.15,1515.40,13605737
2019-12-27,1527.00,1546.20,1521.30,1542.35,8081591
2019-12-30,1545.95,1547.65,1528.05,1544.20,7828402
2019-12-31,1542.00,1543.70,1508.05,1514.05,10150467
2020-01-01,1518.00,1527.10,1505.50,1509.60,6402372
2020-01-02,1512.00,1540.95,1512.00,1535.30,8096561
2020-01-03,1533.00,1541.65,1523.00,1537.15,9593498
2020-01-06,1520.00,1527.90,1498.00,1501.50,11209343
2020-01-07,1519.00,1534.50,1513.50,1524.60,7627191
2020-01-08,1515.00,1534.45,1510.00,1513.15,7336561
2020-01-09,1538.60,1550.00,1531.25,1548.00,6849606
2020-01-10,1551.90,1557.95,1539.65,1547.65,5704686
2020-01-13,1545.05,1558.70,1538.40,1543.70,8358090
2020-01-14,1540.00,1550.00,1521.85,1529.40,7230788
2020-01-15,1535.85,1539.90,1518.25,1523.85,7231393
2020-01-16,1529.00,1543.35,1528.00,1537.90,5873662
2020-01-17,1553.50,1584.95,1553.20,1581.00,13469708
2020-01-20,1609.00,1609.00,1526.40,1532.35,14878868
2020-01-21,1528.60,1545.85,1522.00,1533.90,8650831
2020-01-22,1544.00,1546.75,1531.10,1533.35,4719245
2020-01-23,1536.50,1541.95,1520.70,1526.85,5142037
2020-01-24,1527.00,1536.35,1518.55,1521.55,6687633
2020-01-27,1514.90,1524.45,1505.00,1506.55,6120429
2020-01-28,1508.60,1510.00,1463.60,1471.75,11215313
2020-01-29,1474.05,1494.40,1464.05,1479.85,11313297
2020-01-30,1479.00,1479.70,1440.00,1443.75,10241756
2020-01-31,1453.00,1453.25,1407.20,1411.65,15886673
2020-02-01,1405.30,1426.95,1317.10,1383.35,10718667

上面第二个脚本的问题是我在行中出错

烛台ohlc(ax=ax,opens=df['Open'],High=df['High'],lows=df['Low'],closes=df['Close'],width=0.4,colorup='ff1717',colordown='53c156')

它给了我一个错误(你可以看到我尝试了不同版本的代码来构建烛台图)

主循环candlestick_ohlc()得到了一个意外的关键字参数opens

我有以下问题要问:

>

如何使用matplotlib绘制支撑/阻力(线)、谐波图案。支撑线和谐波模式存储在需要在图表上绘制的数据框中

注:支撑和阻力是股票图表上的一些点,你可以在上面画线,它们充当股票的支撑或阻力

共有1个答案

陆安国
2023-03-14

matplotlib。使用('agg')这是非交互式后端。使用交互式后端,如-GTK3Agg、GTK3Cairo、MacOSX、nbAgg、Qt4Agg、Qt4Cairo、Qt5Agg、Qt5Cairo、TkAgg、TkCairo、WebAgg、WX、WXAgg、WXCairo。尝试使用上面的方法。也许这有帮助

 类似资料:
  • 问题内容: 直到几天前,它仍能正常工作,而当我今天再次尝试构建它时,终端中出现以下错误。我尝试使用多个docker基本映像,但仍给出相同的错误。谁能帮我这个?我不认为我错过了任何东西。如果我错过了,应该早点给我错误,但是现在为什么呢? 而我的docker版本是 这是我的 问题答案: 我刚刚更改了VM Player网络设置。从更改为。现在工作了

  • 我拉了BIRT源分支4.11.0(https://github.com/eclipse/birt)如前所述,使用maven(mvn package-DskipTests)触发了构建,但由于无法解析依赖项而失败。 分析后发现Tycho maven插件无法解析org.eclipse.birt.p2updatesite/pom.xml(\build\org.eclipse.birt.p2updatesi

  • 我试图从主存储库构建Apache Atlas。正如在文件中所述,在克隆存储库并将当前目录更改为之后,我试图使用命令构建。不幸的是,由于他们关闭了存储库的问题部分,我将在这里解释我的问题。 构建过程 在终端中执行以下操作: 运行最后一个命令后,我面临以下错误: 我不知道如何解决上述问题。如果有人能帮我解决janusgraph错误,我将不胜感激。 我需要蜂巢钩的tar文件。为了获取这些信息,我发现我必

  • 我尝试启动一个docker-container,但我有一个错误:

  • 问题内容: 我有一个时髦的脚本去推广代码。长话短说,我知道该脚本中的某个时间点是否成功。如果不成功,我想使构建失败。有什么办法使构建失败? 例: 在“执行Groovy脚本”插件中。您可以编写代码。 其中,“ checkPromote”根据促销的状态返回true或false值。 问题答案: 我认为,中止程序的最优雅方法是声明。

  • 当我尝试构建solr架构时,出现以下错误: 也许这些信息会很有用: MySite/settings.py文件: 博客/search_indexes.py文件: blog/templates/search/index/blog/post_text.txt文件: 我正在使用Apache Solr 4.10.4、Python 3.4.5和Django 1.11.5。当我试图导入干草堆在Python控制台