当前位置: 首页 > 面试题库 >

ValueError: Unknown layer: Functional

吕高昂
2023-03-14
问题内容

I made a CNN in colab and saved the models at every epoch. I exported the h5
file and now am trying to run the model on some test images. Here’s the main
error:

ValueError: Unknown layer: Functional

Here’s the code I used to run the model and save at each epoch:

epochs = 50

callbacks = [
    tf.keras.callbacks.TensorBoard(log_dir='./logs'),
    keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]
model.compile(
    optimizer=keras.optimizers.Adam(1e-3),
    loss="binary_crossentropy",
    metrics=["accuracy"],
)
model.fit(
    train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds,
)

After the model ran I just downloaded the h5 file from the colab sidebar
locally. I re-uploaded the file from the local disk, and here’s how I’m trying
to load the model:

# load and evaluate a saved model
from tensorflow.keras.models import load_model

# load model#
loaded_model = load_model('save_at_47.h5')
loaded_model.layers[0].input_shape

Here’s the full traceback:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-4-6af7396280fa> in <module>()
      3 
      4 # load model#
----> 5 loaded_model = load_model('save_at_47.h5')
      6 loaded_model.layers[0].input_shape

5 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/save.py in load_model(filepath, custom_objects, compile)
    182     if (h5py is not None and (
    183         isinstance(filepath, h5py.File) or h5py.is_hdf5(filepath))):
--> 184       return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)
    185 
    186     if sys.version_info >= (3, 4) and isinstance(filepath, pathlib.Path):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
    176     model_config = json.loads(model_config.decode('utf-8'))
    177     model = model_config_lib.model_from_config(model_config,
--> 178                                                custom_objects=custom_objects)
    179 
    180     # set weights

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/model_config.py in model_from_config(config, custom_objects)
     53                     '`Sequential.from_config(config)`?')
     54   from tensorflow.python.keras.layers import deserialize  # pylint: disable=g-import-not-at-top
---> 55   return deserialize(config, custom_objects=custom_objects)
     56 
     57

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
    107       module_objects=globs,
    108       custom_objects=custom_objects,
--> 109       printable_module_name='layer')

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    360     config = identifier
    361     (cls, cls_config) = class_and_config_for_serialized_keras_object(
--> 362         config, module_objects, custom_objects, printable_module_name)
    363 
    364     if hasattr(cls, 'from_config'):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/generic_utils.py in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
    319   cls = get_registered_object(class_name, custom_objects, module_objects)
    320   if cls is None:
--> 321     raise ValueError('Unknown ' + printable_module_name + ': ' + class_name)
    322 
    323   cls_config = config['config']

ValueError: Unknown layer: Functional

It seems there have been several similar questions
here,and
here. Changing the import method hasn’t
helped yet, and trying to make some kind of
custom object has not worked either.


问题答案:

Rebuilt the network from scratch:

image_size = (212, 212)
batch_size = 32

data_augmentation = keras.Sequential(
    [
        layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
        layers.experimental.preprocessing.RandomRotation(0.8),
    ]
)


def make_model(input_shape, num_classes):
    inputs = keras.Input(shape=input_shape)
    # Image augmentation block
    x = data_augmentation(inputs)

    # Entry block
    x = layers.experimental.preprocessing.Rescaling(1.0 / 255)(x)
    x = layers.Conv2D(32, 3, strides=2, padding="same")(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)

    x = layers.Conv2D(64, 3, padding="same")(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)

    previous_block_activation = x  # Set aside residual

    for size in [128, 256, 512, 728]:
        x = layers.Activation("relu")(x)
        x = layers.SeparableConv2D(size, 3, padding="same")(x)
        x = layers.BatchNormalization()(x)

        x = layers.Activation("relu")(x)
        x = layers.SeparableConv2D(size, 3, padding="same")(x)
        x = layers.BatchNormalization()(x)

        x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

        # Project residual
        residual = layers.Conv2D(size, 1, strides=2, padding="same")(
            previous_block_activation
        )
        x = layers.add([x, residual])  # Add back residual
        previous_block_activation = x  # Set aside next residual

    x = layers.SeparableConv2D(1024, 3, padding="same")(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)

    x = layers.GlobalAveragePooling2D()(x)
    if num_classes == 2:
        activation = "sigmoid"
        units = 1
    else:
        activation = "softmax"
        units = num_classes

    x = layers.Dropout(0.5)(x)
    outputs = layers.Dense(units, activation=activation)(x)
    return keras.Model(inputs, outputs)


model = make_model(input_shape=image_size + (3,), num_classes=2)
keras.utils.plot_model(model, show_shapes=False)

Loaded the weights:

model.load_weights('save_at_47.h5')

And ran a prediction on an image:

# Running inference on new data
img = keras.preprocessing.image.load_img(
    "le_image.jpg", target_size=image_size
)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)  # Create batch axis

predictions = model.predict(img_array)
score = predictions[0]
print(
    "This image is %.2f percent negative and %.2f percent positive."
    % (100 * (1 - score), 100 * score)
)


 类似资料:

相关阅读

相关文章

相关问答