我想到一个与使用pybrain进行时间序列回归相关的问题。我计划在pybrain中使用LSTM层来训练和预测时间序列。
我在下面的链接中找到了示例代码
例如请求:递归神经网络,用于预测序列中的下一个值
在上面的示例中,网络能够在训练后预测序列。但是问题是,网络通过将数据一次性输入到输入层来获取所有顺序数据。例如,如果训练数据每个都有10个特征,那么这10个特征将同时被同时馈送到10个输入节点中。
根据我的理解,这不再是时间序列预测,对吗?由于将每个功能馈入网络的时间没有区别?如果我做错了,请纠正我。
因此,我试图实现的是一个只有一个输入节点和一个输出节点的递归网络。输入节点是所有时间序列数据将在不同时间步长顺序馈送的位置。将训练网络在输出节点上重现输入。
您能否建议或指导我构建我提到的网络?提前非常感谢您。
您可以使用单个输入节点和单个输出节点训练LSTM网络,以进行时间序列预测,如下所示:
首先,作为一种好习惯,让我们使用Python3的打印功能:
from __future__ import print_function
然后,创建一个简单的时间序列:
data = [1] * 3 + [2] * 3
data *= 3
print(data)
[1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2]
现在,将此时间序列放入一个受监督的数据集中,其中每个样本的目标是下一个样本:
from pybrain.datasets import SequentialDataSet
from itertools import cycle
ds = SequentialDataSet(1, 1)
for sample, next_sample in zip(data, cycle(data[1:])):
ds.addSample(sample, next_sample)
用1个输入节点,5个LSTM单元和1个输出节点构建一个简单的LSTM网络:
from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure.modules import LSTMLayer
net = buildNetwork(1, 5, 1,
hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
训练网络:
from pybrain.supervised import RPropMinusTrainer
from sys import stdout
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = [] # save errors for plotting later
EPOCHS_PER_CYCLE = 5
CYCLES = 100
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
trainer.trainEpochs(EPOCHS_PER_CYCLE)
train_errors.append(trainer.testOnData())
epoch = (i+1) * EPOCHS_PER_CYCLE
print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
stdout.flush()
print()
print("final error =", train_errors[-1])
绘制错误(请注意,在这个简单的玩具示例中,我们正在同一数据集上进行测试和培训,这当然不是您要为实际项目做的!):
import matplotlib.pyplot as plt
plt.plot(range(0, EPOCHS, EPOCHS_PER_CYCLE), train_errors)
plt.xlabel('epoch')
plt.ylabel('error')
plt.show()
现在,要求网络预测下一个样本:
for sample, target in ds.getSequenceIterator(0):
print(" sample = %4.1f" % sample)
print("predicted next sample = %4.1f" % net.activate(sample))
print(" actual next sample = %4.1f" % target)
print()
(以上代码基于example_rnn.py
和PyBrain文档中的示例)
译者:ETCartman 之前我们已经学过了许多的前馈网络. 所谓前馈网络, 就是网络中不会保存状态. 然而有时 这并不是我们想要的效果. 在自然语言处理 (NLP, Natural Language Processing) 中, 序列模型是一个核心的概念. 所谓序列模型, 即输入依赖于时间信息的模型. 一个典型的序列模型是隐马尔科夫模型 (HMM, Hidden Markov Model). 另
问题内容: 我想在假期中获得有关Keras的经验,我想我将从股票数据时间序列预测的教科书示例开始。因此,根据过去48小时的平均价格变化(自上次以来的百分比),我想做的是,预测接下来一小时的平均价格变化是多少。 但是,当根据测试集(甚至训练集)进行验证时,预测序列的振幅会逐渐减小,有时会偏移为始终为正或始终为负,即偏离0%变化,即I认为这种事情是正确的。 我提出了以下最小示例来说明问题: 如您所见,
我是时间序列的新手,需要学科专家的帮助。所以我有一个有11个变量的实验室数据,报告了时间。10个变量是可控的,第11个变量是输出。我用LSTM预测了第11个变量的时间序列。结果比预期好得多。第11个变量预测为0.001 RMSE。训练数据有5000个样本,测试数据有4599个。我对预测很满意。现在我需要分析输入10个变量是如何影响第11个输出变量的。请建议一个好的库,类似问题的教程。
介绍 可以在 this great article 查看循环神经网络(RNN)以及 LSTM 的介绍。 语言模型 此教程将展示如何在高难度的语言模型中训练循环神经网络。该问题的目标是获得一个能确定语句概率的概率模型。为了做到这一点,通过之前已经给出的词语来预测后面的词语。我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速。 语
递归神经网络(Recurrent Neural Networks,RNN)是两种人工神经网络的总称:时间递归神经网络(recurrent neural network)和结构递归神经网络(recursive neural network)。时间递归神经网络的神经元间连接构成有向图,而结构递归神经网络利用相似的神经网络结构递归构造更为复杂的深度网络。 RNN一般指代时间递归神经网络。单纯递归神经网络
我有一个包含一整年数据的时间序列数据集(日期是索引)。数据每15分钟测量一次(全年),结果是每天96个时间步。数据已规范化。这些变量是相关的。除VAR外的所有变量都是天气度量值。 VAR在一天期间和一周期间都是季节性的(因为它在周末看起来有点不同,但每个周末都不一样)。VAR值是固定的。我想预测未来两天(前192步)和未来七天(前672步)的VAR值。 以下是数据集的示例: 下面是我准备train