当前位置: 首页 > 面试题库 >

Tensorflow精度为.99,但预测很糟糕

邢嘉祯
2023-03-14
问题内容

也许我做错了预测?

这是项目…我有一个要分割的灰度输入图像。细分是一种简单的二进制分类(考虑前景与背景)。因此,基本真理(y)是0和1的矩阵-
因此有2个分类。哦,输入图像是一个正方形,所以我只使用一个称为n_input

我的准确度基本上收敛到0.99,但是当我做出预测时,我得到的都是零。 编辑 -> 每个输出矩阵中只有一个1,都在同一位置…

这是我的会话代码(其他所有工作)…

with tf.Session() as sess:
    sess.run(init)
    summary = tf.train.SummaryWriter('/tmp/logdir/', sess.graph_def)
    step = 1
    from tensorflow.contrib.learn.python.learn.datasets.scroll import scroll_data
    data = scroll_data.read_data('/home/kendall/Desktop/')
    # Keep training until reach max iterations
    flag = 0
    # while flag == 0:
    while step * batch_size < training_iters:
        batch_y, batch_x = data.train.next_batch(batch_size)
        # pdb.set_trace()
        # batch_x = batch_x.reshape((batch_size, n_input))
        batch_x = batch_x.reshape((batch_size, n_input, n_input))
        batch_y = batch_y.reshape((batch_size, n_input, n_input))
        batch_y = convert_to_2_channel(batch_y, batch_size)
        # batch_y = batch_y.reshape((batch_size, n_output, n_classes))
        batch_y = batch_y.reshape((batch_size, 200, 200, n_classes))
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
        if step % display_step == 0:
            flag = 1
            # Calculate batch loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                              y: batch_y,
                                                              keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc)
        step += 1
    print "Optimization Finished!"
    save_path = "model.ckpt"
    saver.save(sess, save_path)

    im = Image.open('/home/kendall/Desktop/HA900_frames/frame0635.tif')
    batch_x = np.array(im)
    pdb.set_trace()
    batch_x = batch_x.reshape((1, n_input, n_input))
    batch_x = batch_x.astype(float)
    # pdb.set_trace()
    prediction = sess.run(pred, feed_dict={x: batch_x, keep_prob: 1.})
    print prediction
    arr1 = np.empty((n_input,n_input))
    arr2 = np.empty((n_input,n_input))
    for i in xrange(n_input):
        for j in xrange(n_input):
            for k in xrange(2):
                if k == 0:
                    arr1[i][j] = prediction[0][i][j][k]
                else:
                    arr2[i][j] = prediction[0][i][j][k]
    # prediction = np.asarray(prediction)
    # prediction = np.reshape(prediction, (200,200))
    # np.savetxt("prediction.csv", prediction, delimiter=",")
    np.savetxt("prediction1.csv", arr1, delimiter=",")
    np.savetxt("prediction2.csv", arr2, delimiter=",")

由于存在两种分类,因此该末端部分(带有两个循环)仅用于将预测划分为两个2x2矩阵。

我将预测数组保存到CSV文件,就像我说的那样,它们全为零。

我还确认所有数据都是正确的(尺寸和值)。

为什么训练会收敛,但是预测却很糟糕?

如果您想查看所有代码,这里是…

import tensorflow as tf
import pdb
import numpy as np
from numpy import genfromtxt
from PIL import Image

# Import MINST data
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)


# Parameters
learning_rate = 0.001
training_iters = 20000
batch_size = 128
display_step = 1

# Network Parameters
n_input = 200 # MNIST data input (img shape: 28*28)
n_output = 40000 # MNIST total classes (0-9 digits)
n_classes = 2
#n_input = 200

dropout = 0.75 # Dropout, probability to keep units

# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input, n_input])
y = tf.placeholder(tf.float32, [None, n_input, n_input, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)

def maxpool2d(x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                          padding='SAME')


# Create model
def conv_net(x, weights, biases, dropout):
    # Reshape input picture
    x = tf.reshape(x, shape=[-1, n_input, n_input, 1])

    # Convolution Layer
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    # Max Pooling (down-sampling)
    conv1 = maxpool2d(conv1, k=2)
    conv1 = tf.nn.local_response_normalization(conv1)

    # Convolution Layer
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    # Max Pooling (down-sampling)
    conv2 = tf.nn.local_response_normalization(conv2)
    conv2 = maxpool2d(conv2, k=2)

    # Convolution Layer
    conv3 = conv2d(conv2, weights['wc3'], biases['bc3'])
    # Max Pooling (down-sampling)
    conv3 = tf.nn.local_response_normalization(conv3)
    conv3 = maxpool2d(conv3, k=2)

    # pdb.set_trace()

    # Fully connected layer
    # Reshape conv2 output to fit fully connected layer input
    fc1 = tf.reshape(conv3, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # Apply Dropout
    fc1 = tf.nn.dropout(fc1, dropout)

    output = []
    for i in xrange(2):
        output.append(tf.nn.softmax(tf.add(tf.matmul(fc1, weights['out']), biases['out'])))

    return output
    # return tf.nn.softmax(tf.add(tf.matmul(fc1, weights['out']), biases['out']))


# Store layers weight & bias
weights = {
    # 5x5 conv, 1 input, 32 outputs
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    # 5x5 conv, 32 inputs, 64 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    # 5x5 conv, 32 inputs, 64 outputs
    'wc3': tf.Variable(tf.random_normal([5, 5, 64, 128])),
    # fully connected, 7*7*64 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([25*25*128, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, n_output]))
}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bc3': tf.Variable(tf.random_normal([128])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_output]))
}

# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# pdb.set_trace()
pred = tf.pack(tf.transpose(pred,[1,2,0]))
pred = tf.reshape(pred, [-1,n_input,n_input,n_classes])
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.initialize_all_variables()
saver = tf.train.Saver()

def convert_to_2_channel(x, batch_size):
    #assume input has dimension (batch_size,x,y)
    #output will have dimension (batch_size,x,y,2)
    output = np.empty((batch_size, 200, 200, 2))

    temp_arr1 = np.empty((batch_size, 200, 200))
    temp_arr2 = np.empty((batch_size, 200, 200))

    for i in xrange(batch_size):
        for j in xrange(200):
            for k in xrange(200):
                if x[i][j][k] == 1:
                    temp_arr1[i][j][k] = 1
                    temp_arr2[i][j][k] = 0
                else:
                    temp_arr1[i][j][k] = 0
                    temp_arr2[i][j][k] = 1

    for i in xrange(batch_size):
        for j in xrange(200):
            for k in xrange(200):
                for l in xrange(2):
                    if l == 0:
                        output[i][j][k][l] = temp_arr1[i][j][k]
                    else:
                        output[i][j][k][l] = temp_arr2[i][j][k]

    return output

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    summary = tf.train.SummaryWriter('/tmp/logdir/', sess.graph_def)
    step = 1
    from tensorflow.contrib.learn.python.learn.datasets.scroll import scroll_data
    data = scroll_data.read_data('/home/kendall/Desktop/')
    # Keep training until reach max iterations
    flag = 0
    # while flag == 0:
    while step * batch_size < training_iters:
        batch_y, batch_x = data.train.next_batch(batch_size)
        # pdb.set_trace()
        # batch_x = batch_x.reshape((batch_size, n_input))
        batch_x = batch_x.reshape((batch_size, n_input, n_input))
        batch_y = batch_y.reshape((batch_size, n_input, n_input))
        batch_y = convert_to_2_channel(batch_y, batch_size)
        # batch_y = batch_y.reshape((batch_size, n_output, n_classes))
        batch_y = batch_y.reshape((batch_size, 200, 200, n_classes))
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
        if step % display_step == 0:
            flag = 1
            # Calculate batch loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                              y: batch_y,
                                                              keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc)
        step += 1
    print "Optimization Finished!"
    save_path = "model.ckpt"
    saver.save(sess, save_path)

    im = Image.open('/home/kendall/Desktop/HA900_frames/frame0635.tif')
    batch_x = np.array(im)
    pdb.set_trace()
    batch_x = batch_x.reshape((1, n_input, n_input))
    batch_x = batch_x.astype(float)
    # pdb.set_trace()
    prediction = sess.run(pred, feed_dict={x: batch_x, keep_prob: 1.})
    print prediction
    arr1 = np.empty((n_input,n_input))
    arr2 = np.empty((n_input,n_input))
    for i in xrange(n_input):
        for j in xrange(n_input):
            for k in xrange(2):
                if k == 0:
                    arr1[i][j] = prediction[0][i][j][k]
                else:
                    arr2[i][j] = prediction[0][i][j][k]
    # prediction = np.asarray(prediction)
    # prediction = np.reshape(prediction, (200,200))
    # np.savetxt("prediction.csv", prediction, delimiter=",")
    np.savetxt("prediction1.csv", arr1, delimiter=",")
    np.savetxt("prediction2.csv", arr2, delimiter=",")

    # Calculate accuracy for 256 mnist test images
    print "Testing Accuracy:", \
        sess.run(accuracy, feed_dict={x: data.test.images[:256],
                                      y: data.test.labels[:256],
                                      keep_prob: 1.})

问题答案:

代码错误

您的代码中存在多个错误:

  • 您不应tf.nn.sigmoid_cross_entropy_with_logits使用softmax层的输出进行调用,而应使用未 缩放的logits进行调用

警告:此操作期望未缩放的logit,因为它在内部对logit执行softmax以提高效率。不要使用softmax的输出来调用该操作,因为这会产生错误的结果。

  • 实际上,由于您有2个类,因此应使用softmax的损失,使用 tf.nn.softmax_cross_entropy_with_logits

  • 使用时tf.argmax(pred, 1),仅将argmax应用于轴1,即输出图像的高度。您应该tf.argmax(pred, 3)在最后一个轴(尺寸为2)上使用。

    • 这可以解释为什么您获得0.99的准确性
    • 在输出图像上,它将使argmax超过图像的高度,默认情况下为0(因为每个通道的所有值均相等)

型号错误

最大的缺点是您的模型通常 很难 优化。

  • 您的softmax超过40,000个课程,这是巨大的。
  • 您不会完全利用要输出图像的事实(预测前景/背景)。
    • 例如,预测2,345与预测2,346和预测2,545高度相关,但是您没有考虑到这一点

我建议先阅读一些有关语义细分的内容:

  • 本文:用于语义分割的全卷积网络
  • 这些来自CS231n(斯坦福大学)的幻灯片:尤其是有关上采样和去卷积的部分

推荐建议

如果您想使用TensorFlow,则需要从小处着手。首先尝试一个可能包含1个隐藏层的非常简单的网络。

您需要绘制张量的所有形状,以确保它们与您的想法相对应。例如,如果进行了绘制tf.argmax(y, 1),您将意识到形状[batch_size, 200, 2]不是预期的[batch_size, 200, 200]

TensorBoard是您的朋友,您应该尝试在此处绘制输入图像以及预测,以查看它们的外观。

尝试使用10个图像的非常小的html" target="_blank">数据集进行较小的尝试,看看是否可以过拟合并预测几乎准确的响应。

总而言之,我不确定我的所有建议,但是值得尝试,我希望这对您的成功道路有所帮助!



 类似资料:
  • 我使用TensorFlow和数据集实现了一个logistic回归模型。我想出了如何使用以下代码获得学习算法的总精度... 这工作良好,打印精度为91%。现在我正在恢复模型,并将单个图像传递到模型中以进行预测。我传递了一张数字7的图片,,它正确地预测了它->... 现在我想要得到这个预测的准确性与模型的关系,但我不确定如何继续,我尝试了以下显然不起作用的...

  • 刚从ML开始,创建了我的第一个CNN来检测人脸图像的方位。我得到的训练和测试精度高达约96-99%超过2组不同的1000张图片(128x128RGB)。然而,当我自行从测试集中预测一个图像时,模型很少预测正确。我认为在测试和预测期间,我将数据加载到模型中的方式肯定有区别。下面是我如何将数据加载到模型中进行训练和测试: 下面是我如何加载图像来进行预测: ImageDataGenerator处理图像的

  • 我的团队正在Tensorflow中训练一个CNN对损坏/可接受部件进行二进制分类。我们通过修改cifar10示例代码来创建我们的代码。在我以前的神经网络经验中,我总是训练到损失非常接近于0(远低于1)。然而,我们现在在训练期间(在一个单独的GPU上)用一个验证集来评估我们的模型,看起来精度在大约6.7K步数后停止增长,而损失在超过40K步数后仍在稳步下降。这是因为过装吗?一旦损失非常接近于零,我们

  • 实际的y值是y=[0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

  • 我目前正在建立一个卷积神经网络来区分清晰的心电图像和有噪声的心电图像。 带噪声: 无噪音: 下面是我用来预测训练模型的代码。 我不知道为什么会发生这种情况,即使我从未使用相同的图像进行测试、验证或培训。有人能帮我一下吗?我尝试了所有的方法,用不同的超参数训练模型,但每次这个模型都输出。

  • 这是我当前抓取图像类型的代码。一旦它检测到了狗,我会试着让它看到检测的准确性。希望这有道理?

  • 绝影迫不及待地把X-posure的注册机交给周总,给他的时,他努力让自己显得平静一点,但他等到的并不是周总激动的神情,他平静地说:“不错不错。这也算个小项目,这是200块奖金,你给我签张工资单。” 出了办公室,绝影感觉很不服气。200块钱奖金就不说了,自己辛辛苦苦好容易做出个注册机来,随便讲给谁,只要是业内人事,大都会发自内心赞扬他几句,就算不是发自内心,至少也会说几句恭维的话,可周总居然就像没看

  • 我有一个神经网络,它对3个输出进行分类。我的数据集非常小,我有340张火车图像和60张测试图像。我构建了一个模型,当我编译时,我的结果是: 纪元97/100 306/306 [==============================] - 46s 151ms/阶跃损失: 0.2453-精度: 0.8824-val_loss: 0.3557-val_accuracy: 0.8922纪元98/10