当前位置: 首页 > 面试题库 >

Apriori 是什么,请介绍一下apriori原理?

东方骏
2023-03-14
本文向大家介绍Apriori 是什么,请介绍一下apriorihtml" target="_blank">原理?相关面试题,主要包含被问及Apriori 是什么,请介绍一下apriori原理?时的应答技巧和注意事项,需要的朋友参考一下

参考回答:

1)Apriori原理

如果一个项集是频繁的,则它的所有子集一定也是频繁的;相反,如果项集是非频繁的,则它的所有超集也一定是非频繁的。

2)发现频繁项集

假定事务总数为N,支持度阈值是minsup,发现频繁项集的过程如下(理论上,存在许多产生候选项集的方法,本例使用支持度阈值来产生):

①初始时每个项都被看作候选1-项集。计数对它们的支持度之后,将支持度少于阈值的候选项集丢弃,生成频繁1-项集。

②在第二次迭代,依据Apriori原理(即所有非频繁的1-项集的超集都是非频繁的),仅使用频繁1-项集来产生候选2-项集。此时生成的候选2-项集有多个,将支持度少于阈值的候选项集丢弃,生成频繁2-项集。

③经过多次迭代,每次用上一次生成的频繁n-项集产生新的候选(n+1)-项集,直至没有发现频繁(n+1)-项集,则得到的频繁n-项集就是最终结果。

3)发现关联规则

发现关联规则是指找出支持度大于等于minsup并且置信度大于等于minconf的所有规则,其中minsup和minconf是对应的支持度阈值和置信度阈值。

 类似资料:
  • 什么样的数据才是频繁项集呢?也许你会说,这还不简单,肉眼一扫,一起出现次数多的数据集就是频繁项集吗!的确,这也没有说错,但是有两个问题,第一是当数据量非常大的时候,我们没法直接肉眼发现频繁项集,这催生了关联规则挖掘的算法,比如Apriori, PrefixSpan, CBA。第二是我们缺乏一个频繁项集的标准。比如10条记录,里面A和B同时出现了三次,那么我们能不能说A和B一起构成频繁项集呢?因此我

  • 前言 最近的几个月一直在研究和学习各种经典的DM,机器学习的相关算法,收获还是挺多的,另外还整了一个DM算法库,集成了很多数据挖掘算法,放在了我的github上,博友的热度超出我的想象,有很多人给我点了star,在此感谢各大博友们,我将会继续更新我的DM算法库。也许这些算法还不能直接拿来用,但是可以给你提供思路,或变变数据的输入格式就能用了。好,扯得有点远了,现在说正题,本篇文章重新回到讲述Apr

  • 一、Apriori 算法概述 Apriori 算法是一种最有影响力的挖掘布尔关联规则的频繁项集的 算法,它是由Rakesh Agrawal 和RamakrishnanSkrikant 提出的。它使用一种称作逐层搜索的迭代方法,k- 项集用于探索(k+1)- 项集。首先,找出频繁 1- 项集的集合。该集合记作L1。L1 用于找频繁2- 项集的集合 L2,而L2 用于找L2,如此下去,直到不能找到 k

  • 本文向大家介绍介绍一下,堆排序的原理是什么?相关面试题,主要包含被问及介绍一下,堆排序的原理是什么?时的应答技巧和注意事项,需要的朋友参考一下 考察点:堆排序 堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。在堆中定义以下几种操作: (1)最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节

  • 本文向大家介绍介绍一下,什么是hashmap?相关面试题,主要包含被问及介绍一下,什么是hashmap?时的应答技巧和注意事项,需要的朋友参考一下 考察点:哈希表 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射。 HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。 HashMap 的实现不是同

  • 本文向大家介绍介绍一下,归并排序的原理是什么?相关面试题,主要包含被问及介绍一下,归并排序的原理是什么?时的应答技巧和注意事项,需要的朋友参考一下 考察点:归并排序 (1)归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 (2)首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁