当前位置: 首页 > 面试题库 >

随机森林如何评估特征重要性?

佘缪文
2023-03-14
本文向大家介绍随机森林如何评估特征重要性?相关面试题,主要包含被问及随机森林如何评估特征重要性?时的应答技巧和注意事项,需要的朋友参考一下
   1. decrease gini 当前节点训练集的方差减去左节点方差和右节点方差
  1. decrease accracy 对一棵树随机改变OOB样本的第j列得到误差1,保持其他列不变,对j列进行随机上下置换,得到误差2,误差之间的差距越大说明特征越重要
 类似资料:
  • 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力。 1. bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图。 从上图可以看出,Bagging的弱学习器之间的确没有boosting那样的联系。它的特点在“随机采样”。那么什么是随机采样? 随机采样(bootsrap)就是从我们的训练集里面采

  • 在随机森林方法中,创建了大量决策树。 每个观察都被送入每个决策树。 每次观察的最常见结果用作最终输出。 一个新的观察结果被输入所有树木,并对每个分类模型进行多数投票。 对构建树时未使用的情况进行错误估计。 这称为OOB (Out-of-bag)错误估计,以百分比形式提及。 R包"randomForest"用于创建随机森林。 安装R包 在R控制台中使用以下命令安装程序包。 您还必须安装依赖包(如果有

  • 问题内容: 说我有一个分类特征,颜色,它取值 [‘红色’,’蓝色’,’绿色’,’橙色’], 我想用它来预测随机森林中的事物。如果我对它进行一次热编码(即,将其更改为四个伪变量),如何告诉sklearn四个伪变量实际上是一个变量?具体来说,当sklearn随机选择要在不同节点上使用的功能时,它要么应该同时包括红色,蓝色,绿色和橙色的虚拟对象,要么不应该包含其中任何一个。 我听说没有办法做到这一点,但

  • 主要内容:安装R包 - randomForest,语法,示例在随机森林方法中,创建了大量的决策树。每个观察结果都被送入每个决策树。 每个观察结果最常用作最终输出。对所有决策树进行新的观察,并对每个分类模型进行多数投票。 对于在构建树时未使用的情况进行错误估计。 这被称为OOB(Out-of-bag)错误估计,以百分比表示。 R中的软件包用于创建随机林。 安装R包 - randomForest 在R控制台中使用以下命令安装软件包,还必须安装其它依赖软件包(如

  • 1 Bagging   Bagging采用自助采样法(bootstrap sampling)采样数据。给定包含m个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时,样本仍可能被选中, 这样,经过m次随机采样操作,我们得到包含m个样本的采样集。   按照此方式,我们可以采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基本学习器,再将这些基本学习

  • 我的挑战是我不能使用随机森林的可变重要性特性,因为我的大多数特性都与它们最近的过去有高度的相关性。例如,一个移动平均数跨越了一个几天的窗口,这意味着它包含了我的数据集中的多个观察的信息。 这意味着随机森林生成的袋外样本将与随机森林用来训练我的模型的样本内特征相关联。因此,我从中得到的变量重要性将是高度乐观和过度适应的。 我看到的解决方案是以某种方式计算样本外测试集上的变量重要性,而不是使用OOB交