在将随机林模型保存到磁盘时,我得到了以下错误
。spark集群配置-spark-package-spark-1.6.0-bin-hadoop2.6
模式-独立
我运行spark的方法是在每台从机中复制相同的数据
当您试图保存一个空的DataFrame时,会出现错误。检查这行代码之前的步骤是否正在筛选/减少您的记录。
问题内容: 我有两个RandomForestClassifier模型,我想将它们组合成一个元模型。他们都使用相似但不同的数据进行了训练。我怎样才能做到这一点? 我想将所有树木合并成一个500棵树模型 问题答案: 我相信可以通过修改RandomForestClassifier对象的和属性来实现。森林中的每棵树都存储为DecisionTreeClassifier对象,这些树的列表存储在属性中。为了确保
随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力。 1. bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图。 从上图可以看出,Bagging的弱学习器之间的确没有boosting那样的联系。它的特点在“随机采样”。那么什么是随机采样? 随机采样(bootsrap)就是从我们的训练集里面采
在随机森林方法中,创建了大量决策树。 每个观察都被送入每个决策树。 每次观察的最常见结果用作最终输出。 一个新的观察结果被输入所有树木,并对每个分类模型进行多数投票。 对构建树时未使用的情况进行错误估计。 这称为OOB (Out-of-bag)错误估计,以百分比形式提及。 R包"randomForest"用于创建随机森林。 安装R包 在R控制台中使用以下命令安装程序包。 您还必须安装依赖包(如果有
主要内容:安装R包 - randomForest,语法,示例在随机森林方法中,创建了大量的决策树。每个观察结果都被送入每个决策树。 每个观察结果最常用作最终输出。对所有决策树进行新的观察,并对每个分类模型进行多数投票。 对于在构建树时未使用的情况进行错误估计。 这被称为OOB(Out-of-bag)错误估计,以百分比表示。 R中的软件包用于创建随机林。 安装R包 - randomForest 在R控制台中使用以下命令安装软件包,还必须安装其它依赖软件包(如
1 Bagging Bagging采用自助采样法(bootstrap sampling)采样数据。给定包含m个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时,样本仍可能被选中, 这样,经过m次随机采样操作,我们得到包含m个样本的采样集。 按照此方式,我们可以采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基本学习器,再将这些基本学习
本文向大家介绍随机森林和 GBDT 的区别?相关面试题,主要包含被问及随机森林和 GBDT 的区别?时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 1)随机森林采用的bagging思想,而GBDT采用的boosting思想。这两种方法都是Bootstrap思想的应用,Bootstrap是一种有放回的抽样方法思想。虽然都是有放回的抽样,但二者的区别在于:Bagging采用有放回的均匀取样,而