我正在Hadoop上实现PageRank算法,正如标题所述,我在尝试执行代码时想到了以下错误:
地图中密钥的类型不匹配:预期的org.apache.hadoop.io.Text,收到的org.apache.hadoop.io.LongWritable
在我的输入文件中,我将图形节点ID存储为键,并将一些关于它们的信息存储为值。我的输入文件具有以下格式:
1 \ t 3.4,2,5,6,67
4 \ t 4.2,77,2,7,83
……
试图理解错误说明了什么,我尝试将LongWritable用作主要变量类型,如下面的代码所示。这意味着我有:
map
减少
但是,我也尝试过:
map <文本,文本,文本,文本>
reduce <文本,文本,文本,文本>
并且:
map
reduce
而且我总是想出同样的错误。我想我很难理解错误中预期和收到的含义。这是否意味着我的地图函数从我的输入文件中期望LongWritable并获得了Text?我使用的输入文件的格式或变量类型是否存在问题?
这是完整的代码,您能否告诉我要更改的内容以及在哪里进行更改?:
import java.io.IOException;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.lang.Object.*;
import org.apache.commons.cli.ParseException;
import org.apache.commons.lang.StringUtils;
import org.apache.commons.configuration.Configuration;
import org.apache.hadoop.security.Credentials;
import org.apache.log4j.*;
import org.apache.commons.logging.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Pagerank
{
public static class PRMap extends Mapper<LongWritable, LongWritable, LongWritable, LongWritable>
{
public void map(LongWritable lineNum, LongWritable line, OutputCollector<LongWritable, LongWritable> outputCollector, Reporter reporter) throws IOException, InterruptedException
{
if (line.toString().length() == 0) {
return;
}
Text key = new Text();
Text value = new Text();
LongWritable valuel = new LongWritable();
StringTokenizer spline = new StringTokenizer(line.toString(),"\t");
key.set(spline.nextToken());
value.set(spline.nextToken());
valuel.set(Long.parseLong(value.toString()));
outputCollector.collect(lineNum,valuel);
String info = value.toString();
String splitter[] = info.split(",");
if(splitter.length >= 3)
{
float f = Float.parseFloat(splitter[0]);
float pagerank = f / (splitter.length - 2);
for(int i=2;i<splitter.length;i++)
{
LongWritable key2 = new LongWritable();
LongWritable value2 = new LongWritable();
long l;
l = Long.parseLong(splitter[i]);
key2.set(l);
//key2.set(splitter[i]);
value2.set((long)f);
outputCollector.collect(key2, value2);
}
}
}
}
public static class PRReduce extends Reducer<LongWritable,LongWritable,LongWritable,LongWritable>
{
private Text result = new Text();
public void reduce(LongWritable key, Iterator<LongWritable> values,OutputCollector<LongWritable, LongWritable> results, Reporter reporter) throws IOException, InterruptedException
{
float pagerank = 0;
String allinone = ",";
while(values.hasNext())
{
LongWritable temp = values.next();
String converted = temp.toString();
String[] splitted = converted.split(",");
if(splitted.length > 1)
{
for(int i=1;i<splitted.length;i++)
{
allinone = allinone.concat(splitted[i]);
if(i != splitted.length - 1)
allinone = allinone.concat(",");
}
}
else
{
float f = Float.parseFloat(splitted[0]);
pagerank = pagerank + f;
}
}
String last = Float.toString(pagerank);
last = last.concat(allinone);
LongWritable value = new LongWritable();
value.set(Long.parseLong(last));
results.collect(key, value);
}
}
public static void main(String[] args) throws Exception
{
org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "pagerank_itr0");
job.setJarByClass(Pagerank.class);
job.setMapperClass(Pagerank.PRMap.class);
job.setReducerClass(Pagerank.PRReduce.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(LongWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
job.waitForCompletion(true);
}
}
您没有在作业配置中设置映射器输出类。尝试使用以下方法从Job中设置键和值类:
setMapOutputKeyClass();
setMapOutputValueClass();
我得到这个错误: 14/12/10 18:11:01 INFO Mapred.JobClient:任务Id:Attest_201412100143_0008_M_000000_0,状态:失败java.io.ioException:溢出在org.apache.hadoop.mapred.maptask$MapOutputBuffer.Collect(maptask.java:425)在wordcou
错误:java.io.ioException:错误值类:类org.apache.hadoop.io.text不是类org.apache.hadoop.mapred.ifile$writer.append(ifile.java:194)在org.apache.hadoop.mapred.task$combineoutputCollector.collect(task.java:1350)在org.a
问题内容: hadoop的新手,并试图从此处了解mapreduce wordcount示例代码。 文档中的映射器是- 我看到在mapreduce字数示例中,映射代码如下 问题- Object类型的此键的作用是什么?如果映射器的输入是文本文档,那么我假设其中的值将是hadoop已分区并存储在HDFS中的文本块(64MB或128MB)。 更一般而言,此输入键Keyin在地图代码中的用途是什么? 任何指
这是我运行程序时收到的错误: 注:[19533]是我使用的一个测试值。 这是在CustomerServiceBeanImpl.java中出现错误的方法: 在快速检查ERD时,“Customer”表中的“id”列的数据类型为bigint。然而,我不确定这是否重要。(顺便提一下PostgreSQL数据库。) 如何修复此错误?
我对容器映射有问题。我需要在key中存储我自己的类Person,但我有错误C2784(即,“编译器无法从提供的函数参数中确定模板参数”)。这是《Ivor Horton的开始:Visual C 2010》一书中的一个例子 错误1错误C2784:“布尔标准::运算符 错误 2 错误 C2784: 'bool std::运算符 错误 3 错误 C2784: '布尔 std::运算符 错误4错误C2784