当前位置: 首页 > 面试题库 >

使用Hadoop分布式缓存时出现FileNotFoundException

邵正雅
2023-03-14
问题内容

这次有人应该请小我努力使用分布式cahe运行我的代码。我已经在hdfs上保存了文件,但是当我运行以下代码时:

import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.awt.image.Raster;
import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;
import org.apache.hadoop.filecache.*;
import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.lang.String;
import java.lang.Runtime;
import java.net.URI;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;

public class blur2 {
public static class BlurMapper extends MapReduceBase implements Mapper<Text, BytesWritable, LongWritable, BytesWritable>
{
    OutputCollector<LongWritable, BytesWritable> goutput;

    int IMAGE_HEIGHT = 240;
    int IMAGE_WIDTH = 320;
    public BytesWritable Gmiu;
    public BytesWritable Gsigma;
    public BytesWritable w;
    byte[] bytes = new byte[IMAGE_HEIGHT*IMAGE_WIDTH*3];
    public BytesWritable emit = new BytesWritable(bytes);
    int count = 0;
    int initVar = 125;
    public LongWritable l = new LongWritable(1);
    byte[] byte1 = new byte[IMAGE_HEIGHT*IMAGE_WIDTH];
    byte[] byte2 = new byte[IMAGE_HEIGHT*IMAGE_WIDTH];
    byte[] byte3 = new byte[IMAGE_HEIGHT*IMAGE_WIDTH];
    public void map(Text key, BytesWritable file,OutputCollector<LongWritable, BytesWritable> output, Reporter reporter) throws IOException {
                    goutput = output;
BufferedImage img = ImageIO.read(new ByteArrayInputStream(file.getBytes()));
Raster ras=img.getData();
DataBufferByte db= (DataBufferByte)ras.getDataBuffer();
                    byte[] data = db.getData();


                    if(count==0){

                        for(int i=0;i<IMAGE_HEIGHT*IMAGE_WIDTH;i++)
                         {
                         byte1[i]=20;
                         byte2[i]=125;
                         }
                            Gmiu = new BytesWritable(data);
                            Gsigma = new BytesWritable(byte1);
                            w = new BytesWritable(byte2);
                            count++;
                    }

                        else{
                        byte1 = Gmiu.getBytes();
                        byte2 = Gsigma.getBytes();
                        byte3 = w.getBytes();
                             for(int i=0;i<IMAGE_HEIGHT*IMAGE_WIDTH;i++)
                             {
                                byte pixel = data[i];
                                Double  tempmiu=new Double(0.0);
                                Double  tempsig=new Double(0.0);
                                 double temp1=0.0; double alpha = 0.05;
                                 tempmiu = (1-alpha)*byte1[i] + alpha*pixel;
                                 temp1=temp1+(pixel-byte1[i])*(pixel-byte1[i]);
                                 tempsig=(1-alpha)*byte2[i]+ alpha*temp1;

                                 byte1[i] = tempmiu.byteValue();
                                 byte2[i]= tempsig.byteValue();
                                 Double w1=new Double((1-alpha)*byte3[i]+alpha*100);
                                 byte3[i] = w1.byteValue();
                             }
                             Gmiu.set(byte1,0,IMAGE_HEIGHT*IMAGE_WIDTH);
                             Gsigma.set(byte2,0,IMAGE_HEIGHT*IMAGE_WIDTH);
                             w.set(byte3,0,IMAGE_HEIGHT*IMAGE_WIDTH);
                        }

                        byte1 = Gsigma.getBytes();
                        for(int i=0;i<IMAGE_HEIGHT*IMAGE_WIDTH;i++)
                        {
                            bytes[i]=byte1[i];
                        }
                        byte1 = Gsigma.getBytes();
                        for(int i=0;i<IMAGE_HEIGHT*IMAGE_WIDTH;i++)
                        {
                            bytes[IMAGE_HEIGHT*IMAGE_WIDTH+i]=byte1[i];
                        }
                        byte1 = w.getBytes();
                        for(int i=0;i<IMAGE_HEIGHT*IMAGE_WIDTH;i++)
                        {
                            bytes[2*IMAGE_HEIGHT*IMAGE_WIDTH+i]=byte1[i];
                        }
                        emit.set(bytes,0,3*IMAGE_HEIGHT*IMAGE_WIDTH);

        }

        @Override
         public void close(){
            try{
                  goutput.collect(l, emit);
            }
            catch(Exception e){
                e.printStackTrace();
                System.exit(-1);
            }

         }

 }
//end of first job , this is running perfectly
        public static void main(String[] args) throws URISyntaxException {

                if(args.length!=3) {

                        System.err.println("Usage: blurvideo input  output");
                        System.exit(-1);

                 }
                 JobClient client = new JobClient();
                 JobConf conf = new JobConf(blur2.class);


                conf.setOutputValueClass(BytesWritable.class);
                conf.setInputFormat(SequenceFileInputFormat.class);
                //conf.setNumMapTasks(n)

               SequenceFileInputFormat.addInputPath(conf, new Path(args[0]));
                 TextOutputFormat.setOutputPath(conf, new  Path(args[1]));
              conf.setMapperClass(BlurMapper.class);
              conf.setNumReduceTasks(0);
              //conf.setReducerClass(org.apache.hadoop.mapred.lib.IdentityReducer.class);

                client.setConf(conf);
                try {
                       JobClient.runJob(conf);
                } catch (Exception e) {
                        e.printStackTrace();
                }

             //  exec("jar cf /home/hmobile/hadoop-0.19.2/imag /home/hmobile/hadoop-0.19.2/output");
                JobClient client2 = new JobClient();
                 JobConf conf2 = new JobConf(blur2.class);


                conf2.setOutputValueClass(BytesWritable.class);
                conf2.setInputFormat(SequenceFileInputFormat.class);
                //conf.setNumMapTasks(n)

               SequenceFileInputFormat.addInputPath(conf2, new Path(args[0]));
                 SequenceFileOutputFormat.setOutputPath(conf2, new  Path(args[2]));
              conf2.setMapperClass(BlurMapper2.class);
              conf2.setNumReduceTasks(0);

            DistributedCache.addCacheFile(new URI("~/ayush/output/part-00000"), conf2);// these files are already on the hdfs
            DistributedCache.addCacheFile(new URI("~/ayush/output/part-00001"), conf2);




                client2.setConf(conf2);
                try {
                       JobClient.runJob(conf2);
                } catch (Exception e) {
                        e.printStackTrace();
                }

        }


public static class BlurMapper2 extends MapReduceBase implements Mapper<Text, BytesWritable, LongWritable, BytesWritable>
{

    int IMAGE_HEIGHT = 240;
    int T =60;
    int IMAGE_WIDTH = 320;
    public BytesWritable Gmiu;
    public BytesWritable Gsigma;
    public BytesWritable w;
    byte[] bytes = new byte[IMAGE_HEIGHT*IMAGE_WIDTH];
    public BytesWritable emit = new BytesWritable(bytes);
    int initVar = 125;int gg=0;
    int K=64;int k=0,k1=0,k2=0;
    public LongWritable l = new LongWritable(1);
    byte[] Gmiu1 = new byte[IMAGE_HEIGHT*IMAGE_WIDTH*K];
    byte[] Gsigma1 = new byte[IMAGE_HEIGHT*IMAGE_WIDTH*K];
    byte[] w1 = new byte[IMAGE_HEIGHT*IMAGE_WIDTH*K];
public Path[] localFiles=new Path[2];
private FileSystem fs;
        @Override
public void configure(JobConf conf2)
{
          try {
              fs = FileSystem.getLocal(new Configuration());

                localFiles = DistributedCache.getLocalCacheFiles(conf2);
               //System.out.println(localFiles[0].getName());
            } catch (IOException ex) {
                Logger.getLogger(blur2.class.getName()).log(Level.SEVERE, null, ex);
            }

}
public void map(Text key, BytesWritable file,OutputCollector<LongWritable, BytesWritable> output, Reporter reporter) throws IOException
{
    if(gg==0){
         //System.out.println(localFiles[0].getName());
     String wrd; String line;
     for(Path f:localFiles)
            {
                 if(!f.getName().endsWith("crc"))
                 {
                  //  FSDataInputStream localFile = fs.open(f);
  BufferedReader  br = null;
                    try {
                     br = new BufferedReader(new InputStreamReader(fs.open(f)));
                        int c = 0;
                        try {
                            while ((line = br.readLine()) != null) {
                                StringTokenizer itr = new StringTokenizer(line, " ");
                                while (itr.hasMoreTokens()) {
                                    wrd = itr.nextToken();
                                    c++;
                                    int i = Integer.parseInt(wrd, 16);
                                    Integer I = new Integer(i);
                                    byte b = I.byteValue();
                                    if (c < IMAGE_HEIGHT * IMAGE_WIDTH) {
                                        Gmiu1[k] = b;k++;
                                    } else {
                                        if ((c >= IMAGE_HEIGHT * IMAGE_WIDTH) && (c < 2 * IMAGE_HEIGHT * IMAGE_WIDTH)) {
                                            Gsigma1[k] = b;k1++;
                                        } else {
                                            w1[k] = b;k2++;
                                        }
                                    }

                                }
                            }
                        } catch (IOException ex) {
                            Logger.getLogger(blur2.class.getName()).log(Level.SEVERE, null, ex);
                        }
                    } catch (FileNotFoundException ex) {
                        Logger.getLogger(blur2.class.getName()).log(Level.SEVERE, null, ex);
                    } finally {
                        try {
                            br.close();
                        } catch (IOException ex) {
                            Logger.getLogger(blur2.class.getName()).log(Level.SEVERE, null, ex);
                        }
                    }


                 }
            }
     gg++;
    }

}
}
}

解决了很多问题,任何人都可以告诉我为什么我收到此错误:

java.io.FileNotFoundException: File does not exist: ~/ayush/output/part-00000
    at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:394)
    at org.apache.hadoop.filecache.DistributedCache.getTimestamp(DistributedCache.java:475)
    at org.apache.hadoop.mapred.JobClient.configureCommandLineOptions(JobClient.java:676)
    at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:774)
    at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1127)
    at blur2.main(blur2.java:175)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
    at java.lang.reflect.Method.invoke(Method.java:597)
    at org.apache.hadoop.util.RunJar.main(RunJar.java:165)
    at org.apache.hadoop.mapred.JobShell.run(JobShell.java:54)
    at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65)
    at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:79)
    at org.apache.hadoop.mapred.JobShell.main(JobShell.java:68)

问题答案:

问题在于您使用的文件名“〜/ ayush / output / part-00000”依赖于Unix
shell(sh,bash,ksh)代字扩展名,将“〜”替换为主目录的路径名。

Java(以及C,C ++和大多数其他编程语言)不进行波浪号扩展。您需要将路径名提供为“ / home / ayush / output /
part-00000” …或将倾斜形式扩展到的任何绝对路径名。

严格来说,应该按以下方式创建URI:

new File("/home/ayush/output/part-00000").toURI()

作为

new URI("/home/ayush/output/part-00000")

后者创建一个没有“协议”的URI,这可能会出现问题。



 类似资料:
  • Web 应用程序可能需要为成百上千甚至更多的用户同时提供服务。如果你没有采取必要的措施,在这种负载下,你的网站可能会崩溃或变得没有响应。 假设在主页显示最后 10 条新闻,并且平均每分钟有上千名用户访问此页面。你可能为每个用户通过查询数据库来显示页面视图信息: SELECT TOP 10 Title, NewsDate, Subject, Body FROM News ORDER BY NewsD

  • 问题内容: 我正在寻找Java分布式缓存解决方案。我们希望功能喜欢: 我们已经分析了Terracotta这样的框架,它似乎是缓存框架中我们想要的一切……但是,似乎需要一个中央缓存节点,这成为我们的单点故障。 除了推出我们自己的解决方案之外,还有其他想法吗? 问题答案: 我建议使用JBossCache或EhCache(使用分布式缓存侦听器)。我都用过,我都喜欢,它们都适合您的要求。

  • 我尝试使用hadoop作为分布式模式,并且我进行了设置,但是发生了一个错误。我将在下面描述安装过程: 0/etc/hosts 已安装的软件包 获取hadoop 0/etc/hadoop/core-site.xml 0/etc/hadoop/hdfs-site.xml 0/etc/hadoop/mapred-site.xml 主服务器是 节点服务器是 然后我尝试使用这个命令 结果如下: 0node1

  • 我正在使用ehcache(2.10.1)和terracotta(开源4.3.1)实现分布式缓存。我在单台机器上尝试了两个JVM实例和一个terracotta服务器,代码按预期工作,没有错误。 现在,我尝试运行相同的terracotta服务器,但在虚拟机上使用客户端。在虚拟机上运行客户端时,会收到以下消息和错误: 使用的 tc-config.xml 文件: 使用的 ehcache.xml 文件: 在

  • [命名空间: Serenity.Caching, 程序集: Serenity.Caching.Couchbase] Redis 是另一种内存数据库,由于其优秀的性能和可靠性, StackOverflow 也在使用它,他们所有的 WEB 服务只用了一个 Redis 数据库。 你可以从 Serenity.Caching.Redis 的 NuGet 程序包获取该服务类型的 Serenity 实现。 它可

  • [命名空间: Serenity.Caching, 程序集: Serenity.Caching.Couchbase] Couchbase 是一个分布式数据库,有像 Memcached 的访问接口。 可以从 NuGet 程序包 Serenity.Caching.Couchbase 获取 Serenity 对此服务类型的实现。 一旦你使用服务定位器注册它: Dependency.Resolve<IDep