谁能推荐一种工具来衡量Web App的UI级别的性能?
我并不是在专门进行负载测试,我们的应用一次最多只能容纳5个用户,我希望能够自动执行并重新运行的指标是诸如页面加载时间,从单击按钮到事件发生,滑出疼痛的反应时间等。我们正在分别衡量API性能,希望能够确定速度下降是API问题还是可以在UI中解决的问题。
理想情况下,我可以将某些东西与Selenium结合使用,单击一个按钮,然后确定预期的动作发生需要多长时间。我们的自动化框架是用Ruby编写的。我们的测试都是在Chrome上完成的,因为它是唯一使用的浏览器,我们还没有迁移到Headless
Chrome,理想情况下不想迁移到Phantom JS。
您可以通过 Selenium* 通过注入 JavaScript 来访问 Google Chrome开发者工具 上的 网络面板数据
,从而提取Web应用程序UI级别的性能数据,如下所示: __
* __
driver.get("http://www.google.com");
System.out.println(driver.getTitle());
String scriptToExecute = "var performance = window.performance || window.mozPerformance || window.msPerformance || window.webkitPerformance || {}; var network = performance.getEntries() || {}; return network;";
String netData = ((JavascriptExecutor)driver).executeScript(scriptToExecute).toString();
System.out.println(netData);
connectEnd Time when server connection is finished.
connectStart Time just before server connection begins.
domComplete Time just before document readiness completes.
domContentLoadedEventEnd Time after DOMContentLoaded event completes.
domContentLoadedEventStart Time just before DOMContentLoaded starts.
domInteractive Time just before readiness set to interactive.
domLoading Time just before readiness set to loading.
domainLookupEnd Time after domain name lookup.
domainLookupStart Time just before domain name lookup.
fetchStart Time when the resource starts being fetched.
loadEventEnd Time when the load event is complete.
loadEventStart Time just before the load event is fired.
navigationStart Time after the previous document begins unload.
redirectCount Number of redirects since the last non-redirect.
redirectEnd Time after last redirect response ends.
redirectStart Time of fetch that initiated a redirect.
requestStart Time just before a server request.
responseEnd Time after the end of a response or connection.
responseStart Time just before the start of a response.
timing Reference to a performance timing object.
navigation Reference to performance navigation object.
performance Reference to performance object for a window.
type Type of the last non-redirect navigation event.
unloadEventEnd Time after the previous document is unloaded.
unloadEventStart Time just before the unload event is fired.
控制台输出:
[{redirectCount=0, encodedBodySize=221323, unloadEventEnd=0, responseEnd=2862.8000000000006, domainLookupEnd=1504.42, unloadEventStart=0, domContentLoadedEventStart=4210.570000000001, type=navigate, decodedBodySize=221323, duration=8536.735, redirectStart=0, connectEnd=1894.2450000000001, toJSON={}, requestStart=1901.1250000000002, startTime=0, fetchStart=2863.1150000000002, domContentLoadedEventEnd=4217.22, entryType=navigation, workerStart=0, responseStart=2043.73, domInteractive=4210.525000000001, domComplete=8508.945000000002, domainLookupStart=1504.42, redirectEnd=0, transferSize=221894, connectStart=1504.42, loadEventStart=8510.7, secureConnectionStart=1549.4750000000001, name=http://www.google.com/, nextHopProtocol=h2, initiatorType=navigation, loadEventEnd=8536.735}, {encodedBodySize=2623, entryType=resource, responseEnd=3084.8050000000003, workerStart=0, responseStart=2949.635, domainLookupEnd=2896.7950000000005, domainLookupStart=2896.7950000000005, redirectEnd=0, decodedBodySize=2623, duration=188.00999999999976, transferSize=2795, redirectStart=0, connectEnd=2896.7950000000005, toJSON={}, connectStart=2896.7950000000005, requestStart=2898.8500000000004, secureConnectionStart=0, name=https://www.google.co.in/logos/doodles/2018/doodle-snow-games-day-7-5009413877268480.2-s.png, startTime=2896.7950000000005, fetchStart=2896.7950000000005, nextHopProtocol=h2, initiatorType=img}, {encodedBodySize=0, entryType=resource, responseEnd=3686.665, workerStart=0, responseStart=0, domainLookupEnd=0, domainLookupStart=0, redirectEnd=0, decodedBodySize=0, duration=789.3299999999995, transferSize=0, redirectStart=0, connectEnd=0, toJSON={}, connectStart=0, requestStart=0, secureConnectionStart=0, name=https://www.gstatic.com/external_hosted/createjs/createjs-2015.11.26.min.js, startTime=2897.3350000000005, fetchStart=2897.3350000000005, nextHopProtocol=h2, initiatorType=script}, {encodedBodySize=0, entryType=resource, responseEnd=3129.655, workerStart=0, responseStart=0, domainLookupEnd=0, domainLookupStart=0, redirectEnd=0, decodedBodySize=0, duration=209.14999999999964, transferSize=0, redirectStart=0, connectEnd=0, toJSON={}, connectStart=0, requestStart=0, secureConnectionStart=0, name=https://ssl.gstatic.com/gb/images/i1_1967ca6a.png, startTime=2920.5050000000006, fetchStart=2920.5050000000006, nextHopProtocol=h2, initiatorType=css}, {duration=0, entryType=paint, toJSON={}, name=first-paint, startTime=3089.57}, {duration=0, entryType=paint, toJSON={}, name=first-contentful-paint, startTime=3089.5750000000003}, {encodedBodySize=11842, entryType=resource, responseEnd=3260.3000000000006, workerStart=0, responseStart=3163.4650000000006, domainLookupEnd=3094.1400000000003, domainLookupStart=3094.1400000000003, redirectEnd=0, decodedBodySize=11842, duration=166.1600000000003, transferSize=11956, redirectStart=0, connectEnd=3094.1400000000003, toJSON={}, connectStart=3094.1400000000003, requestStart=3095.53, secureConnectionStart=0, name=https://www.google.co.in/logos/2018/snowgames_luge/cta.png, startTime=3094.1400000000003, fetchStart=3094.1400000000003, nextHopProtocol=h2, initiatorType=css}, {encodedBodySize=232500, entryType=resource, responseEnd=6086.695000000001, workerStart=0, responseStart=3776.0950000000003, domainLookupEnd=3728.21, domainLookupStart=3728.21, redirectEnd=0, decodedBodySize=740604, duration=2358.4850000000006, transferSize=232769, redirectStart=0, connectEnd=3728.21, toJSON={}, connectStart=3728.21, requestStart=3729.3250000000003, secureConnectionStart=0, name=https://www.google.co.in/logos/2018/snowgames_luge/snowgames_luge18.2.js, startTime=3728.21, fetchStart=3728.21, nextHopProtocol=h2, initiatorType=script}, {encodedBodySize=0, entryType=resource, responseEnd=7080.765, workerStart=0, responseStart=7079.8150000000005, domainLookupEnd=4210.260000000001, domainLookupStart=4210.260000000001, redirectEnd=0, decodedBodySize=0, duration=2870.504999999999, transferSize=46, redirectStart=0, connectEnd=4210.260000000001, toJSON={}, connectStart=4210.260000000001, requestStart=4211.54, secureConnectionStart=0, name=https://www.google.co.in/gen_204?s=webaft&atyp=csi&ei=_q6CWojELMLuvASp6ZEY&rt=wsrt.2885,aft.1324,prt.1324, startTime=4210.260000000001, fetchStart=4210.260000000001, nextHopProtocol=h2, initiatorType=beacon}, {encodedBodySize=146393, entryType=resource, responseEnd=7750.4400000000005, workerStart=0, responseStart=6089.950000000001, domainLookupEnd=4218.745, domainLookupStart=4218.745, redirectEnd=0, decodedBodySize=421665, duration=3531.6950000000006, transferSize=146605, redirectStart=0, connectEnd=4218.745, toJSON={}, connectStart=4218.745, requestStart=4219.87, secureConnectionStart=0, name=https://www.google.co.in/xjs/_/js/k=xjs.s.en.ce3a-RKhSpw.O/m=sx,sb,cdos,cr,elog,hsm,jsa,r,d,csi/am=wCL0eMEBiP8PAUWiFQQWIE0wDA0/rt=j/d=1/t=zcms/rs=ACT90oGXoKgamzhHqIk5RIw3HVermJmYow, startTime=4218.745, fetchStart=4218.745, nextHopProtocol=h2, initiatorType=script}, {encodedBodySize=0, entryType=resource, responseEnd=5235.985000000001, workerStart=0, responseStart=0, domainLookupEnd=0, domainLookupStart=0, redirectEnd=0, decodedBodySize=0, duration=816.4299999999994, transferSize=0, redirectStart=0, connectEnd=0, toJSON={}, connectStart=0, requestStart=0, secureConnectionStart=0, name=https://www.gstatic.com/og/_/js/k=og.og2.en_US.oN1DeTh5DCc.O/rt=j/m=def/exm=in,fot/d=1/ed=1/rs=AA2YrTtvVAie43QBzx5aLGc9xwmpprbMfQ, startTime=4419.555000000001, fetchStart=4419.555000000001, nextHopProtocol=h2, initiatorType=script}, {encodedBodySize=0, entryType=resource, responseEnd=7618.695000000001, workerStart=0, responseStart=0, domainLookupEnd=0, domainLookupStart=0, redirectEnd=0, decodedBodySize=0, duration=2331.785, transferSize=0, redirectStart=0, connectEnd=0, toJSON={}, connectStart=0, requestStart=0, secureConnectionStart=0, name=https://apis.google.com/_/scs/abc-static/_/js/k=gapi.gapi.en.41Z8rKx1XQQ.O/m=gapi_iframes,googleapis_client,plusone/rt=j/sv=1/d=1/ed=1/am=AAE/rs=AHpOoo-9aMm3x1MgiL0Q16Hn9-7ySAbiAQ/cb=gapi.loaded_0, startTime=5286.910000000001, fetchStart=5286.910000000001, nextHopProtocol=h2, initiatorType=script}, {encodedBodySize=33155, entryType=resource, responseEnd=8232.415, workerStart=0, responseStart=7961.63, domainLookupEnd=7909.375000000001, domainLookupStart=7909.375000000001, redirectEnd=0, decodedBodySize=101433, duration=323.03999999999996, transferSize=33289, redirectStart=0, connectEnd=7909.375000000001, toJSON={}, connectStart=7909.375000000001, requestStart=7911.31, secureConnectionStart=0, name=https://www.google.co.in/xjs/_/js/k=xjs.s.en.byi87tp8hFQ.O/m=aa,abd,async,dvl,foot,fpe,ipv6,lu,m,mu,sf,sonic,spch,d3l,udlg/am=wCL0eMEBiP8PAUWiFQQWIE0wDA0/exm=sx,sb,cdos,cr,elog,hsm,jsa,r,d,csi/rt=j/d=1/ed=1/t=zcms/rs=ACT90oHN7XGqdfNtn5tbonkyQwGSzrxogw?xjs=s1, startTime=7909.375000000001, fetchStart=7909.375000000001, nextHopProtocol=h2, initiatorType=script}, {encodedBodySize=0, entryType=resource, responseEnd=8265.45, workerStart=0, responseStart=0, domainLookupEnd=0, domainLookupStart=0, redirectEnd=0, decodedBodySize=0, duration=355.22500000000036, transferSize=0, redirectStart=0, connectEnd=0, toJSON={}, connectStart=0, requestStart=0, secureConnectionStart=0, name=https://www.google.com/textinputassistant/tia.png, startTime=7910.225, fetchStart=7910.225, nextHopProtocol=h2, initiatorType=img}, {encodedBodySize=469, entryType=resource, responseEnd=8264.44, workerStart=0, responseStart=8234.305, domainLookupEnd=7910.400000000001, domainLookupStart=7910.400000000001, redirectEnd=0, decodedBodySize=469, duration=354.03999999999996, transferSize=559, redirectStart=0, connectEnd=7910.400000000001, toJSON={}, connectStart=7910.400000000001, requestStart=7912.325000000001, secureConnectionStart=0, name=https://www.google.co.in/logos/2018/snowgames_luge/main-sprite.png, startTime=7910.400000000001, fetchStart=7910.400000000001, nextHopProtocol=h2, initiatorType=img}]
我写了一段C代码来展示关于优化和分支预测的讨论中的一个观点。然后我注意到比我预期的更多样化的结果。我的目标是用C和C之间的通用子集编写它,这两种语言都符合标准,并且相当可移植。它在不同的Windows PC上进行了测试: 用VS2010编制/英特尔酷睿2、WinXP的O2优化结果: 编辑:编译器的完整开关: /Zi/no logo/W3/WX-/O2/Oi/Oy-/GL/D " WIN32 "/D
我使用jQuery Mobile 1.3进行Worklight 5.0.6开发。我发现一些功能,如过渡,面板和弹出菜单是不顺利的真实设备(三星银河S3 下面是测试应用程序的代码:Worklight,PhoneGap
目标 在图像处理中,由于每秒要处理大量操作,因此必须使代码不仅提供正确的解决方案,而且还必须以最快的方式提供。因此,在本章中,你将学习 衡量代码的性能。 一些提高代码性能的技巧。 你将看到以下功能:cv.getTickCount,cv.getTickFrequency等。 除了OpenCV,Python还提供了一个模块time,这有助于衡量执行时间。另一个模块profile有助于获取有关代码的详细
【UI 模块性能】页面主要展示项目运行过程中 UI 模块的CPU占用情况,主要包括以下几个部分: 数据汇总 该项主要展示项目运行过程中的“CPU峰值”、“CPU均值”、“堆内存分配总值”和“堆内存均值”。其中,“CPU均值”和“堆内存分配均值”表示UI模块平均每帧的CPU占用和堆内存分配。 UI 模块总体耗时 & 耗时详情 UI 模块总体CPU耗时 主要展示项目运行过程中 UI 模块的整体耗时情况
问题内容: System.currentTimeMillis()是Java时间性能的最佳衡量标准吗?使用此工具将采取行动之前的时间与采取行动之后的时间进行比较时是否有陷阱?有更好的选择吗? 问题答案: 我希望不会- 这是我不使用时使用的。
我用Kafka-斯特里姆齐算子在库伯内特斯上运行Kafka。我正在使用增量粘性再平衡策略,通过以下配置我的消费者: 每次我在我的消费者组中缩放消费者时,该组中的所有现有消费者都会生成以下异常 线程“main”组织中出现异常。阿帕奇。Kafka。常见的错误。RebalanceInProgressException:由于使用者正在进行自动分区分配的重新平衡,因此无法完成偏移量提交。您可以通过调用pol