我有以下数据框:
Date abc xyz
01-Jun-13 100 200
03-Jun-13 -20 50
15-Aug-13 40 -5
20-Jan-14 25 15
21-Feb-14 60 80
我需要按年份和月份对数据进行分组。例如:按2013年1月,2013年2月,2013年3月等分组。我将使用新分组的数据创建一个显示每年/每月abc vs
xyz的图表。
我已经尝试了groupby和sum的各种组合,但是似乎什么也无法工作。
感谢您的协助。
您可以使用重采样或Grouper
(在后台重采样)。
首先,请确保datetime列实际上是datetimes(用命中pd.to_datetime
)。如果它是DatetimeIndex会更容易:
In [11]: df1
Out[11]:
abc xyz
Date
2013-06-01 100 200
2013-06-03 -20 50
2013-08-15 40 -5
2014-01-20 25 15
2014-02-21 60 80
In [12]: g = df1.groupby(pd.Grouper(freq="M")) # DataFrameGroupBy (grouped by Month)
In [13]: g.sum()
Out[13]:
abc xyz
Date
2013-06-30 80 250
2013-07-31 NaN NaN
2013-08-31 40 -5
2013-09-30 NaN NaN
2013-10-31 NaN NaN
2013-11-30 NaN NaN
2013-12-31 NaN NaN
2014-01-31 25 15
2014-02-28 60 80
In [14]: df1.resample("M", how='sum') # the same
Out[14]:
abc xyz
Date
2013-06-30 40 125
2013-07-31 NaN NaN
2013-08-31 40 -5
2013-09-30 NaN NaN
2013-10-31 NaN NaN
2013-11-30 NaN NaN
2013-12-31 NaN NaN
2014-01-31 25 15
2014-02-28 60 80
注意:以前的pd.Grouper(freq="M")
写为pd.TimeGrouper("M")
。从0.21开始不html" target="_blank">推荐使用后者。
我曾以为以下方法会起作用,但不会(由于as_index
未得到尊重?我不确定。)。出于兴趣考虑,我将其包括在内。
如果它是一列(必须是datetime64列!就像我说的那样,to_datetime
用来打它),则可以使用PeriodIndex:
In [21]: df
Out[21]:
Date abc xyz
0 2013-06-01 100 200
1 2013-06-03 -20 50
2 2013-08-15 40 -5
3 2014-01-20 25 15
4 2014-02-21 60 80
In [22]: pd.DatetimeIndex(df.Date).to_period("M") # old way
Out[22]:
<class 'pandas.tseries.period.PeriodIndex'>
[2013-06, ..., 2014-02]
Length: 5, Freq: M
In [23]: per = df.Date.dt.to_period("M") # new way to get the same
In [24]: g = df.groupby(per)
In [25]: g.sum() # dang not quite what we want (doesn't fill in the gaps)
Out[25]:
abc xyz
2013-06 80 250
2013-08 40 -5
2014-01 25 15
2014-02 60 80
为了获得理想的结果,我们必须重新索引…
我有以下数据框: 我需要按年和月分组数据。即:按2013年1月、2013年2月、2013年3月等分组...我将使用新分组的数据来创建一个显示每年/每月abc vs xyz的图表。 我尝试过groupby和sum的各种组合,但似乎没有任何效果。 谢谢你的帮助。
我有一个数据框,上面写着有一列 <代码> 我想对这些年龄段进行分组,并创建一个类似这样的新专栏 如何使用Pandas库实现这一点。 我试过这样做 但这样做我得到了这个警告 /Users/Anand/miniconda3/envs/learn/lib/python3.7/site packages/ipykernel_launcher.py:3:SettingWithCopyWarning:试图在数
我正在使用此数据框: 我想通过名称和水果将其聚合,得到每个名称的水果总数。 我试着按名字和水果分组,但如何得到水果的总数呢。
有没有一个简单的方法可以做到这一点?
问题内容: 我试图弄清楚如何在Pandas数据框中的日期中添加3个月,同时将其保持为日期格式,因此可以使用它来查找范围。 这是我尝试过的: 但是,出现以下错误: 问题答案: 你可以用 另一种使用方式 细节
问题内容: 我有一个数据框 ,它有一 列。我想创建两个新的数据框。一个包含 年份等于的所有行 ,另一个数据框包含 年份不等于的所有行 。我知道您可以这样做,`df.ix[‘2000-1-1’ ‘2001-1-1’]`但是为了获得2000年中没有的所有行,需要创建2个额外的数据帧,然后进行串联/联接。 有这样的办法吗? 这段代码不起作用,但是有什么类似的方法吗? 问题答案: 您可以使用datetim