我正在尝试使用Keras实施LSTM。
我知道Keras中的LSTM需要3D张量与形状(nb_samples, timesteps, input_dim)
作为输入。但是,我不能完全确定输入在我的情况下的样子,因为我T
对每个输入只有一个观察样本,而不是多个样本,即(nb_samples=1, timesteps=T, input_dim=N)
。将我的每个输入分成长度样本是否更好T/M
?T
对我而言,大约有几百万个观测值,因此在这种情况下,每个样本应保留多长时间,即我将如何选择M
?
另外,我是对的,这个张量应该看起来像:
[[[a_11, a_12, ..., a_1M], [a_21, a_22, ..., a_2M], ..., [a_N1, a_N2, ..., a_NM]],
[[b_11, b_12, ..., b_1M], [b_21, b_22, ..., b_2M], ..., [b_N1, b_N2, ..., b_NM]],
...,
[[x_11, x_12, ..., a_1M], [x_21, x_22, ..., x_2M], ..., [x_N1, x_N2, ..., x_NM]]]
其中M和N如前所述,x对应于我如上所述从拆分中获得的最后一个样本?
最后,给定一个熊猫数据框,T
每一列中都有观察值,每一列中都有观察值N
,如何创建这样的输入以馈给Keras?
以下是设置时间序列数据以训练LSTM的示例。该模型输出是胡说八道,因为我仅将其设置为演示如何构建模型。
import pandas as pd
import numpy as np
# Get some time series data
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/timeseries.csv")
df.head()
时间序列数据帧:
Date A B C D E F G
0 2008-03-18 24.68 164.93 114.73 26.27 19.21 28.87 63.44
1 2008-03-19 24.18 164.89 114.75 26.22 19.07 27.76 59.98
2 2008-03-20 23.99 164.63 115.04 25.78 19.01 27.04 59.61
3 2008-03-25 24.14 163.92 114.85 27.41 19.61 27.84 59.41
4 2008-03-26 24.44 163.45 114.84 26.86 19.53 28.02 60.09
您可以将输入输入构建为向量,然后使用pandas.cumsum()
函数构建时间序列的序列:
# Put your inputs into a single list
df['single_input_vector'] = df[input_cols].apply(tuple, axis=1).apply(list)
# Double-encapsulate list so that you can sum it in the next step and keep time steps as separate elements
df['single_input_vector'] = df.single_input_vector.apply(lambda x: [list(x)])
# Use .cumsum() to include previous row vectors in the current row list of vectors
df['cumulative_input_vectors'] = df.single_input_vector.cumsum()
可以类似的方式设置输出,但是它将是单个向量而不是序列:
# If your output is multi-dimensional, you need to capture those dimensions in one object
# If your output is a single dimension, this step may be unnecessary
df['output_vector'] = df[output_cols].apply(tuple, axis=1).apply(list)
输入序列必须具有相同的长度才能在模型中运行,因此您需要将其填充为累积向量的最大长度:
# Pad your sequences so they are the same length
from keras.preprocessing.sequence import pad_sequences
max_sequence_length = df.cumulative_input_vectors.apply(len).max()
# Save it as a list
padded_sequences = pad_sequences(df.cumulative_input_vectors.tolist(), max_sequence_length).tolist()
df['padded_input_vectors'] = pd.Series(padded_sequences).apply(np.asarray)
训练数据可以从数据框中提取并放入numpy数组中。 请注意,从数据框中出来的输入数据不会构成3D数组。 它使数组成为数组,这是不一样的。
您可以使用hstack和reshape来构建3D输入数组。
# Extract your training data
X_train_init = np.asarray(df.padded_input_vectors)
# Use hstack to and reshape to make the inputs a 3d vector
X_train = np.hstack(X_train_init).reshape(len(df),max_sequence_length,len(input_cols))
y_train = np.hstack(np.asarray(df.output_vector)).reshape(len(df),len(output_cols))
为了证明这一点:
>>> print(X_train_init.shape)
(11,)
>>> print(X_train.shape)
(11, 11, 6)
>>> print(X_train == X_train_init)
False
获得训练数据后,您可以定义输入层和输出层的尺寸。
# Get your input dimensions
# Input length is the length for one input sequence (i.e. the number of rows for your sample)
# Input dim is the number of dimensions in one input vector (i.e. number of input columns)
input_length = X_train.shape[1]
input_dim = X_train.shape[2]
# Output dimensions is the shape of a single output vector
# In this case it's just 1, but it could be more
output_dim = len(y_train[0])
建立模型:
from keras.models import Model, Sequential
from keras.layers import LSTM, Dense
# Build the model
model = Sequential()
# I arbitrarily picked the output dimensions as 4
model.add(LSTM(4, input_dim = input_dim, input_length = input_length))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['accuracy'])
最后,您可以训练模型并将训练日志保存为历史记录:
# Set batch_size to 7 to show that it doesn't have to be a factor or multiple of your sample size
history = model.fit(X_train, y_train,
batch_size=7, nb_epoch=3,
verbose = 1)
输出:
Epoch 1/3
11/11 [==============================] - 0s - loss: 3498.5756 - acc: 0.0000e+00
Epoch 2/3
11/11 [==============================] - 0s - loss: 3498.5755 - acc: 0.0000e+00
Epoch 3/3
11/11 [==============================] - 0s - loss: 3498.5757 - acc: 0.0000e+00
而已。使用model.predict(X)
whereX
与为X_train
从模型进行预测时使用相同的格式(样本数量除外)。
我对TensorFlow和LSTM架构相当陌生。我在计算数据集的输入和输出(x_train、x_test、y_trainy_test)时遇到了问题。 我最初输入的形状: X_列车:(366,4) Ytrain和Ytest是一系列股票价格。Xtrain和Xtest是我想学习的四个预测股价的功能。 这是产生的错误: -------------------------------------------
我正在尝试创建一个CNN来对数据进行分类。我的数据是X[N\u数据,N\u特征]我想创建一个能够对其进行分类的神经网络。我的问题是关于keras后端Conv1D的输入形状。 我想在上面重复一个过滤器。。假设有10个特征,然后为接下来的10个特征保持相同的权重。对于每个数据,我的卷积层将创建N\U特征/10个新神经元。我该怎么做?我应该在input\u形状中放置什么? 有什么建议吗?非常感谢。
我在使用Keras和Python对3D形状进行分类时遇到了一个问题。我有一个文件夹,里面有一些JSON格式的模型。我将这些模型读入Numpy数组。模型是25*25*25,表示体素化模型的占用网格(每个位置表示位置(i、j、k)中的体素是否有点),因此我只有1个输入通道,就像2D图像中的灰度图像一样。我拥有的代码如下: 在此之后,我得到以下错误 使用TensorFlow后端。回溯(最后一次调用):文
我有32760个音频频谱,计算维度=72(#帧)x 40(#频段),我试图将其输入“宽”卷积神经网络(第一层是4个不同conv层的合奏)。这些频谱没有深度,因此它们可以表示为72 x 40 2D数字浮点数组,因此分类器的X输入是一个32760个元素长的数组,每个元素都是这些72 x 40 x 1频谱之一。Y输入是一个标签数组,一个热编码,有32760个元素。 当尝试使用 我得到以下错误: 以下是我
我正在尝试为数字数据集构建1D CNN。我的数据集有520行和13个特征。下面是代码。 它给出了“ValueError:layer sequential\u 21的输入0与layer不兼容::expected min\u ndim=3,found ndim=2。接收到的完整形状:(1,13)”错误。 我需要如何设置输入形状,还是必须重塑X\U列?非常感谢您的帮助。
在Francois Chollet的《使用Python进行深度学习》一书中,我发现了一段代码,输入形状为784,单位为32? 我想知道他们有什么不同。 下面是确切的代码: