当前位置: 首页 > 面试题库 >

将ndarray转换为cv :: Mat的最简单方法是什么?

何涵育
2023-03-14
问题内容

我正在尝试为使用OpenCV中的类的C ++库创建 Python / Cython
包装器cv::Mat。在官方的Python包装器中,所有函数都使用NumPyndarray代替cv::Mat,这非常方便。但是在我自己的包装器中,如何进行这种转换?也就是说,我怎么
创建 cv::Mat np.ndarray


问题答案:

如kyamagu所建议,您可以使用OpenCV的官方python包装器代码,尤其是pyopencv_toand pyopencv_from

我一直在像您一样处理所有依赖项和生成的头文件。然而,可以通过cv2.cpp像光炼金术士在这里那样“清洁”以仅保留必要的东西来降低其复杂性。您将需要使其适应您的需求和所使用的OpenCV版本,但其代码与我使用的基本相同。

#include <Python.h>
#include "numpy/ndarrayobject.h"
#include "opencv2/core/core.hpp"

static PyObject* opencv_error = 0;

static int failmsg(const char *fmt, ...)
{
    char str[1000];

    va_list ap;
    va_start(ap, fmt);
    vsnprintf(str, sizeof(str), fmt, ap);
    va_end(ap);

    PyErr_SetString(PyExc_TypeError, str);
    return 0;
}

class PyAllowThreads
{
public:
    PyAllowThreads() : _state(PyEval_SaveThread()) {}
    ~PyAllowThreads()
    {
        PyEval_RestoreThread(_state);
    }
private:
    PyThreadState* _state;
};

class PyEnsureGIL
{
public:
    PyEnsureGIL() : _state(PyGILState_Ensure()) {}
    ~PyEnsureGIL()
    {
        PyGILState_Release(_state);
    }
private:
    PyGILState_STATE _state;
};

#define ERRWRAP2(expr) \
try \
{ \
    PyAllowThreads allowThreads; \
    expr; \
} \
catch (const cv::Exception &e) \
{ \
    PyErr_SetString(opencv_error, e.what()); \
    return 0; \
}

using namespace cv;

static PyObject* failmsgp(const char *fmt, ...)
{
  char str[1000];

  va_list ap;
  va_start(ap, fmt);
  vsnprintf(str, sizeof(str), fmt, ap);
  va_end(ap);

  PyErr_SetString(PyExc_TypeError, str);
  return 0;
}

static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
    (0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);

static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
    return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}

static inline int* refcountFromPyObject(const PyObject* obj)
{
    return (int*)((size_t)obj + REFCOUNT_OFFSET);
}

class NumpyAllocator : public MatAllocator
{
public:
    NumpyAllocator() {}
    ~NumpyAllocator() {}

    void allocate(int dims, const int* sizes, int type, int*& refcount,
                  uchar*& datastart, uchar*& data, size_t* step)
    {
        PyEnsureGIL gil;

        int depth = CV_MAT_DEPTH(type);
        int cn = CV_MAT_CN(type);
        const int f = (int)(sizeof(size_t)/8);
        int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
                      depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
                      depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
                      depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
        int i;
        npy_intp _sizes[CV_MAX_DIM+1];
        for( i = 0; i < dims; i++ )
            _sizes[i] = sizes[i];
        if( cn > 1 )
        {
            /*if( _sizes[dims-1] == 1 )
                _sizes[dims-1] = cn;
            else*/
                _sizes[dims++] = cn;
        }
        PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
        if(!o)
            CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
        refcount = refcountFromPyObject(o);
        npy_intp* _strides = PyArray_STRIDES(o);
        for( i = 0; i < dims - (cn > 1); i++ )
            step[i] = (size_t)_strides[i];
        datastart = data = (uchar*)PyArray_DATA(o);
    }

    void deallocate(int* refcount, uchar*, uchar*)
    {
        PyEnsureGIL gil;
        if( !refcount )
            return;
        PyObject* o = pyObjectFromRefcount(refcount);
        Py_INCREF(o);
        Py_DECREF(o);
    }
};

NumpyAllocator g_numpyAllocator;

enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };

static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true)
{
    if(!o || o == Py_None)
    {
        if( !m.data )
            m.allocator = &g_numpyAllocator;
        return true;
    }

    if( PyInt_Check(o) )
    {
        double v[] = {PyInt_AsLong((PyObject*)o), 0., 0., 0.};
        m = Mat(4, 1, CV_64F, v).clone();
        return true;
    }
    if( PyFloat_Check(o) )
    {
        double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
        m = Mat(4, 1, CV_64F, v).clone();
        return true;
    }
    if( PyTuple_Check(o) )
    {
        int i, sz = (int)PyTuple_Size((PyObject*)o);
        m = Mat(sz, 1, CV_64F);
        for( i = 0; i < sz; i++ )
        {
            PyObject* oi = PyTuple_GET_ITEM(o, i);
            if( PyInt_Check(oi) )
                m.at<double>(i) = (double)PyInt_AsLong(oi);
            else if( PyFloat_Check(oi) )
                m.at<double>(i) = (double)PyFloat_AsDouble(oi);
            else
            {
                failmsg("%s is not a numerical tuple", name);
                m.release();
                return false;
            }
        }
        return true;
    }

    if( !PyArray_Check(o) )
    {
        failmsg("%s is not a numpy array, neither a scalar", name);
        return false;
    }

    bool needcopy = false, needcast = false;
    int typenum = PyArray_TYPE(o), new_typenum = typenum;
    int type = typenum == NPY_UBYTE ? CV_8U :
               typenum == NPY_BYTE ? CV_8S :
               typenum == NPY_USHORT ? CV_16U :
               typenum == NPY_SHORT ? CV_16S :
               typenum == NPY_INT ? CV_32S :
               typenum == NPY_INT32 ? CV_32S :
               typenum == NPY_FLOAT ? CV_32F :
               typenum == NPY_DOUBLE ? CV_64F : -1;

    if( type < 0 )
    {
        if( typenum == NPY_INT64 || typenum == NPY_UINT64 || type == NPY_LONG )
        {
            needcopy = needcast = true;
            new_typenum = NPY_INT;
            type = CV_32S;
        }
        else
        {
            failmsg("%s data type = %d is not supported", name, typenum);
            return false;
        }
    }

    int ndims = PyArray_NDIM(o);
    if(ndims >= CV_MAX_DIM)
    {
        failmsg("%s dimensionality (=%d) is too high", name, ndims);
        return false;
    }

    int size[CV_MAX_DIM+1];
    size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
    const npy_intp* _sizes = PyArray_DIMS(o);
    const npy_intp* _strides = PyArray_STRIDES(o);
    bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;

    for( int i = ndims-1; i >= 0 && !needcopy; i-- )
    {
        // these checks handle cases of
        //  a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
        //  b) transposed arrays, where _strides[] elements go in non-descending order
        //  c) flipped arrays, where some of _strides[] elements are negative
        if( (i == ndims-1 && (size_t)_strides[i] != elemsize) ||
            (i < ndims-1 && _strides[i] < _strides[i+1]) )
            needcopy = true;
    }

    if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
        needcopy = true;

    if (needcopy)
    {
        if( needcast )
            o = (PyObject*)PyArray_Cast((PyArrayObject*)o, new_typenum);
        else
            o = (PyObject*)PyArray_GETCONTIGUOUS((PyArrayObject*)o);
        _strides = PyArray_STRIDES(o);
    }

    for(int i = 0; i < ndims; i++)
    {
        size[i] = (int)_sizes[i];
        step[i] = (size_t)_strides[i];
    }

    // handle degenerate case
    if( ndims == 0) {
        size[ndims] = 1;
        step[ndims] = elemsize;
        ndims++;
    }

    if( ismultichannel )
    {
        ndims--;
        type |= CV_MAKETYPE(0, size[2]);
    }

    if( ndims > 2 && !allowND )
    {
        failmsg("%s has more than 2 dimensions", name);
        return false;
    }

    m = Mat(ndims, size, type, PyArray_DATA(o), step);

    if( m.data )
    {
        m.refcount = refcountFromPyObject(o);
        if (!needcopy)
        {
            m.addref(); // protect the original numpy array from deallocation
                        // (since Mat destructor will decrement the reference counter)
        }
    };
    m.allocator = &g_numpyAllocator;

    return true;
}

static PyObject* pyopencv_from(const Mat& m)
{
    if( !m.data )
        Py_RETURN_NONE;
    Mat temp, *p = (Mat*)&m;
    if(!p->refcount || p->allocator != &g_numpyAllocator)
    {
        temp.allocator = &g_numpyAllocator;
        ERRWRAP2(m.copyTo(temp));
        p = &temp;
    }
    p->addref();
    return pyObjectFromRefcount(p->refcount);
}

清理cv2.cpp文件后,以下是一些Cython代码,负责转换。请注意该import_array()函数的定义和调用(这是NumPy函数,定义在其中的标头中cv2.cpp),这对于定义使用的宏是必要的pyopencv_to,如果不调用它,则会遇到lightalchemist指出的分段错误。

from cpython.ref cimport PyObject

# Declares OpenCV's cv::Mat class
cdef extern from "opencv2/core/core.hpp":
    cdef cppclass Mat:
        pass

# Declares the official wrapper conversion functions + NumPy's import_array() function
cdef extern from "cv2.cpp":
    void import_array()
    PyObject* pyopencv_from(const _Mat&)
    int pyopencv_to(PyObject*, _Mat&)


# Function to be called at initialization
cdef void init():
    import_array()

# Python to C++ conversion
cdef Mat nparrayToMat(object array):
    cdef Mat mat
    cdef PyObject* pyobject = <PyObject*> array
    pyopencv_to(pyobject, mat)
    return <Mat> mat

# C++ to Python conversion
cdef object matToNparray(Mat mat):
    return <object> pyopencv_from(mat)

注意:由于import_array宏中有一个奇怪的return语句,在编译时由于某种原因我在Fedora 20上遇到了NumPy
1.8.0错误,我不得不手动将其删除以使其工作,但我在NumPy的1.8中找不到此return语句.0 GitHub源代码



 类似资料:
  • 我有C/C++源代码(在Windows上运行良好)将输入帧转换为新帧。 > 将byte[]帧从Java转换为JNI jarrayByte 将jarrayByte转换为Jyte* 从JByte*创建新的cv::mat原始代码* } 我的Java代码:

  • 问题内容: 将格式化的字符串转换为日历的最简单,最简单的方法是什么?例如将“ dd.MM.yyyy”添加到日历? 问题答案: DateFormat df = new SimpleDateFormat(“dd.MM.yyyy”); Calendar cal = Calendar.getInstance(); cal.setTime(df.parse(stringInstanceRepresentin

  • 我一直在研究如何将字符串转换为Rust中的大写字母。到目前为止,我找到的最理想的方法是: 有没有不那么冗长的方法? 注意:这个问题是专门针对Rust 0.9的。在提问时还有另一个相关的答案,但它是针对Rust 0.8的,它有显著的语法差异,因此不适用。

  • 问题内容: 反转此ArrayList的最简单方法是什么? 问题答案: 示例(参考):

  • 反转这个ArrayList的最简单方法是什么?

  • 问题内容: 在我的应用程序中,我使用3rd party库(确切地说是MongoDB的Spring数据)。 该库的方法返回,而我的其他代码则期望。 有什么实用方法可以让我快速将一个转换为另一个吗?我想避免foreach在代码中创建这么简单的循环。 问题答案: 在JDK 8+中,不使用任何其他库: 编辑:上面的是Iterator。如果您正在处理Iterable,