当前位置: 首页 > 工具软件 > Template Lite > 使用案例 >

TFlite demo code

百里胜泫
2023-12-01

1、main函数中获取setting的值

tflite::Lable_image::Main函数:

输入参数全部存储在Setting里面:

./lable_image

 -i

 ./grace_hopper.bmp

 -l

./labels.txt

用于输出结果的标签有哪些。比如 background tench goldfish great white sharp tiger shark hammerhead。。。文件里有很多当然也可以改成汉字的。最后的输出还会输出相关label的置信度

 -m

 ./mobilet_quant_v1_224.tflite

 -a

 0

是否使用android NNAPI加速【interpreter->UseNNAPI(s->accel);】

 -c

 1

循环次数loop_count【

for (int i = 0; i < s->loop_count; i++) {

    if (interpreter->Invoke() != kTfLiteOk) {

      LOG(FATAL) << "Failed 】

-b

128

input mean 代码总默认127.5【用于控制收敛速度?】

-p

0

是否开启profiling【用于深度学习参数优化 

 -t

1

 线程数量【 

 if (s->number_of_threads != -1) {

    interpreter->SetNumThreads(s->number_of_threads);

  }】

 -v

1

 是否显示更多运行信息

-s

input std 代码中默认127.5

文件中的默认值:

external/tensorflow$ vi tensorflow/contrib/lite/examples/label_image/label_image.h +24

 
  1. #ifndef TENSORFLOW_CONTRIB_LITE_EXAMPLES_LABEL_IMAGE_LABEL_IMAGE_H
    
    #define TENSORFLOW_CONTRIB_LITE_EXAMPLES_LABEL_IMAGE_LABEL_IMAGE_H
    
    
    #include "tensorflow/contrib/lite/string.h"
    
    
    namespace tflite {
    
    namespace label_image {
    
    
    struct Settings {
    
    bool verbose = false;
    
    bool accel = false;
    
    bool input_floating = false;
    
    int loop_count = 1;
    
    float input_mean = 127.5f;
    
    float input_std = 127.5f;
    
    string model_name = "./mobilenet_quant_v1_224.tflite";
    
    string input_bmp_name = "./grace_hopper.bmp";
    
    string labels_file_name = "./labels.txt";
    
    string input_layer_type = "uint8_t";
    
    int number_of_threads = 4;
    
    };
    
    
    } // namespace label_image
    
    } // namespace tflite
    
    
    #endif // TENSORFLOW_CONTRIB_LITE_EXAMPLES_LABEL_IMAGE_LABEL_IMAGE_H

在main函数中对应的解释:

 
  1. static struct option long_options[] = {
    
    {"accelerated", required_argument, 0, 'a'},
    
    {"count", required_argument, 0, 'c'},
    
    {"verbose", required_argument, 0, 'v'},
    
    {"image", required_argument, 0, 'i'},
    
    {"labels", required_argument, 0, 'l'},
    
    {"tflite_model", required_argument, 0, 'm'},
    
    {"threads", required_argument, 0, 't'},
    
    {"input_mean", required_argument, 0, 'b'},
    
    {"input_std", required_argument, 0, 's'},
    
    {0, 0, 0, 0}};

2、RunInference(&s);

首先flatbufferbuilder,在modle.h里面包含了两个builder,一个是FlatBufferBuilder,一个是InterpreterBuilder

之前以为FlatBufferBuilder是用来构建只读模型,InterpreterBuilder是用来构建可修改的模型,实际上这样的理解是不对的(从注释上看),FlatBufferBuilder是用来构建tflite的模型,InterpreterBuilder是用来构建interpreter

 
  1. // An RAII object that represents a read-only tflite model, copied from disk,
    
    // or mmapped. This uses flatbuffers as the serialization format.
    
    // flatbuffers是什么来着,好像是一种固定格式的文件,具体有点忘记了
    
    class FlatBufferModel {
    
    public:
    
    // Builds a model based on a file. Returns a nullptr in case of failure.
    
    static std::unique_ptr<FlatBufferModel> BuildFromFile(
    
    const char* filename,
    
    ErrorReporter* error_reporter = DefaultErrorReporter());
    
    
    // Builds a model based on a pre-loaded flatbuffer. The caller retains
    
    // ownership of the buffer and should keep it alive until the returned object
    
    // is destroyed. Returns a nullptr in case of failure.
    
    static std::unique_ptr<FlatBufferModel> BuildFromBuffer(
    
    const char* buffer, size_t buffer_size,
    
    ErrorReporter* error_reporter = DefaultErrorReporter());
    
    
    // Builds a model directly from a flatbuffer pointer. The caller retains
    
    // ownership of the buffer and should keep it alive until the returned object
    
    // is destroyed. Returns a nullptr in case of failure.
    
    static std::unique_ptr<FlatBufferModel> BuildFromModel(
    
    const tflite::Model* model_spec,
    
    ErrorReporter* error_reporter = DefaultErrorReporter());
    
    
    // Releases memory or unmaps mmaped meory.
    
    ~FlatBufferModel();
    
    
    // Copying or assignment is disallowed to simplify ownership semantics.
    
    FlatBufferModel(const FlatBufferModel&) = delete;
    
    FlatBufferModel& operator=(const FlatBufferModel&) = delete;
    
    
    bool initialized() const { return model_ != nullptr; }
    
    const tflite::Model* operator->() const { return model_; }
    
    const tflite::Model* GetModel() const { return model_; }
    
    ErrorReporter* error_reporter() const { return error_reporter_; }
    
    const Allocation* allocation() const { return allocation_; }
    
    
    // Returns true if the model identifier is correct (otherwise false and
    
    // reports an error).
    
    bool CheckModelIdentifier() const;
    
    
    private:
    
    // Loads a model from `filename`. If `mmap_file` is true then use mmap,
    
    // otherwise make a copy of the model in a buffer.
    
    //
    
    // Note, if `error_reporter` is null, then a DefaultErrorReporter() will be
    
    // used.
    
    explicit FlatBufferModel(
    
    const char* filename, bool mmap_file = true,
    
    ErrorReporter* error_reporter = DefaultErrorReporter(),
    
    bool use_nnapi = false);
    
    
    // Loads a model from `ptr` and `num_bytes` of the model file. The `ptr` has
    
    // to remain alive and unchanged until the end of this flatbuffermodel's
    
    // lifetime.
    
    //
    
    // Note, if `error_reporter` is null, then a DefaultErrorReporter() will be
    
    // used.
    
    FlatBufferModel(const char* ptr, size_t num_bytes,
    
    ErrorReporter* error_reporter = DefaultErrorReporter());
    
    
    // Loads a model from Model flatbuffer. The `model` has to remain alive and
    
    // unchanged until the end of this flatbuffermodel's lifetime.
    
    FlatBufferModel(const Model* model, ErrorReporter* error_reporter);
    
    
    // Flatbuffer traverser pointer. (Model* is a pointer that is within the
    
    // allocated memory of the data allocated by allocation's internals.
    
    const tflite::Model* model_ = nullptr;
    
    ErrorReporter* error_reporter_;
    
    Allocation* allocation_ = nullptr;
    
    };

InterpreterBuilder

 
  1. // Build an interpreter capable(能力) of interpreting `model`.建立一个能够解析模型的解析器
    
    //
    
    // model: a scoped(作用域) model whose lifetime must be at least as long as
    
    // the interpreter. In principle multiple interpreters can be made from
    
    // a single model.
    
    // op_resolver: An instance(实例) that implements(实现) the Resolver(分解器) interface which maps
    
    // custom op names and builtin op codes to op registrations.
    
    // reportError: a functor that is called to report errors that handles
    
    // printf var arg semantics(语意). The lifetime of the reportError object must
    
    // be greater than or equal to the Interpreter created by operator().
    
    //
    
    // Returns a kTfLiteOk when successful and sets interpreter to a valid
    
    // Interpreter. Note: the user must ensure the model lifetime is at least as
    
    // long as interpreter's lifetime.
    
    class InterpreterBuilder {
    
    public:
    
    InterpreterBuilder(const FlatBufferModel& model,
    
    const OpResolver& op_resolver);
    
    // Builds an interpreter given only the raw flatbuffer Model object (instead
    
    // of a FlatBufferModel). Mostly used for testing.
    
    // If `error_reporter` is null, then DefaultErrorReporter() is used.
    
    InterpreterBuilder(const ::tflite::Model* model,
    
    const OpResolver& op_resolver,
    
    ErrorReporter* error_reporter = DefaultErrorReporter());
    
    InterpreterBuilder(const InterpreterBuilder&) = delete;
    
    InterpreterBuilder& operator=(const InterpreterBuilder&) = delete;
    
    TfLiteStatus operator()(std::unique_ptr<Interpreter>* interpreter);
    
    TfLiteStatus operator()(std::unique_ptr<Interpreter>* interpreter,
    
    int num_threads);
    
    
    private:
    
    TfLiteStatus BuildLocalIndexToRegistrationMapping();
    
    TfLiteStatus ParseNodes(
    
    const flatbuffers::Vector<flatbuffers::Offset<Operator>>* operators,
    
    Interpreter* interpreter);
    
    TfLiteStatus ParseTensors(
    
    const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
    
    const flatbuffers::Vector<flatbuffers::Offset<Tensor>>* tensors,
    
    Interpreter* interpreter);
    
    
    const ::tflite::Model* model_;
    
    const OpResolver& op_resolver_;
    
    ErrorReporter* error_reporter_;
    
    
    std::vector<TfLiteRegistration*> flatbuffer_op_index_to_registration_;
    
    std::vector<BuiltinOperator> flatbuffer_op_index_to_registration_types_;
    
    const Allocation* allocation_ = nullptr;
    
    };

just like this below:

 
  1. #ifndef TENSORFLOW_CONTRIB_LITE_MODEL_H_
    
    #define TENSORFLOW_CONTRIB_LITE_MODEL_H_
    
    
    #include <memory>
    
    #include "tensorflow/contrib/lite/error_reporter.h"
    
    #include "tensorflow/contrib/lite/interpreter.h"
    
    #include "tensorflow/contrib/lite/schema/schema_generated.h"
    
    
    namespace tflite {
    
    
    class FlatBufferModel{
    
    *************
    
    };
    
    
    class InterpreterBuilder{
    
    ****************
    
    };
    
    
    } // namespace tflite
    
    
    #endif // TENSORFLOW_CONTRIB_LITE_MODEL_H_

然后是Interpreter,也就是我们的解释器,翻译官,在interperter.h这个头文件中,class里面的factor很多

 
  1. // Interpreter实际上是翻译官
    
    class Interpreter {
    
    public:
    
    // Instantiate an interpreter. All errors associated with reading and
    
    // processing this model will be forwarded to the error_reporter object.
    
    //
    
    // Note, if error_reporter is nullptr, then a default StderrReporter is
    
    // used.
    
    explicit Interpreter(ErrorReporter* error_reporter = DefaultErrorReporter());
    
    
    ~Interpreter();
    
    
    Interpreter(const Interpreter&) = delete;
    
    Interpreter& operator=(const Interpreter&) = delete;
    
    
    // Functions to build interpreter
    
    
    // Provide a list of tensor indexes that are inputs to the model.
    
    // Each index is bound check and this modifies the consistent_ flag of the
    
    // interpreter.
    
    TfLiteStatus SetInputs(std::vector<int> inputs);
    
    
    // Provide a list of tensor indexes that are outputs to the model
    
    // Each index is bound check and this modifies the consistent_ flag of the
    
    // interpreter.
    
    TfLiteStatus SetOutputs(std::vector<int> outputs);
    
    
    // Adds a node with the given parameters and returns the index of the new
    
    // node in `node_index` (optionally). Interpreter will take ownership of
    
    // `builtin_data` and destroy it with `free`. Ownership of 'init_data'
    
    // remains with the caller.
    
    TfLiteStatus AddNodeWithParameters(const std::vector<int>& inputs,
    
    const std::vector<int>& outputs,
    
    const char* init_data,
    
    size_t init_data_size, void* builtin_data,
    
    const TfLiteRegistration* registration,
    
    int* node_index = nullptr);
    
    
    // Adds `tensors_to_add` tensors, preserving pre-existing Tensor entries.
    
    // The value pointed to by `first_new_tensor_index` will be set to the
    
    // index of the first new tensor if `first_new_tensor_index` is non-null.
    
    TfLiteStatus AddTensors(int tensors_to_add,
    
    int* first_new_tensor_index = nullptr);
    
    
    // Set description of inputs/outputs/data/fptrs for node `node_index`.
    
    // This variant assumes an external buffer has been allocated of size
    
    // bytes. The lifetime of buffer must be ensured to be greater or equal
    
    // to Interpreter.
    
    TfLiteStatus SetTensorParametersReadOnly(
    
    int tensor_index, TfLiteType type, const char* name,
    
    const std::vector<int>& dims, TfLiteQuantizationParams quantization,
    
    const char* buffer, size_t bytes, const Allocation* allocation = nullptr);
    
    
    // Set description of inputs/outputs/data/fptrs for node `node_index`.
    
    // This variant assumes an external buffer has been allocated of size
    
    // bytes. The lifetime of buffer must be ensured to be greater or equal
    
    // to Interpreter.
    
    TfLiteStatus SetTensorParametersReadWrite(
    
    int tensor_index, TfLiteType type, const char* name,
    
    const std::vector<int>& dims, TfLiteQuantizationParams quantization);
    
    
    // Functions to access tensor data
    
    
    // Read only access to list of inputs.
    
    const std::vector<int>& inputs() const { return inputs_; }
    
    
    // Return the name of a given input. The given index must be between 0 and
    
    // inputs().size().
    
    const char* GetInputName(int index) const {
    
    return context_.tensors[inputs_[index]].name;
    
    }
    
    
    // Read only access to list of outputs.
    
    const std::vector<int>& outputs() const { return outputs_; }
    
    
    // Return the name of a given output. The given index must be between 0 and
    
    // outputs().size().
    
    const char* GetOutputName(int index) const {
    
    return context_.tensors[outputs_[index]].name;
    
    }
    
    
    // Return the number of tensors in the model.
    
    int tensors_size() const { return context_.tensors_size; }
    
    
    // Return the number of ops in the model.
    
    int nodes_size() const { return nodes_and_registration_.size(); }
    
    
    // WARNING: Experimental interface, subject to change
    
    const std::vector<int>& execution_plan() const { return execution_plan_; }
    
    
    // WARNING: Experimental interface, subject to change
    
    // Overrides execution plan. This bounds checks indices sent in.
    
    TfLiteStatus SetExecutionPlan(const std::vector<int>& new_plan);
    
    
    // Get a tensor data structure.
    
    // TODO(aselle): Create a safe ArrayHandle interface to avoid exposing this
    
    // read/write access to structure
    
    TfLiteTensor* tensor(int tensor_index) {
    
    if (tensor_index >= context_.tensors_size || tensor_index < 0)
    
    return nullptr;
    
    return &context_.tensors[tensor_index];
    
    }
    
    
    // Get an immutable tensor data structure.
    
    const TfLiteTensor* tensor(int tensor_index) const {
    
    if (tensor_index >= context_.tensors_size || tensor_index < 0)
    
    return nullptr;
    
    return &context_.tensors[tensor_index];
    
    }
    
    
    // Get a pointer to an operation and registration data structure if in bounds.
    
    // TODO(aselle): Create a safe ArrayHandle interface to avoid exposing this
    
    // read/write access to structure
    
    const std::pair<TfLiteNode, TfLiteRegistration>* node_and_registration(
    
    int node_index) const {
    
    if (node_index >= nodes_and_registration_.size() || node_index < 0)
    
    return nullptr;
    
    return &nodes_and_registration_[node_index];
    
    }
    
    
    // Perform a checked cast to the appropriate tensor type.
    
    template <class T>
    
    T* typed_tensor(int tensor_index) {
    
    if (TfLiteTensor* tensor_ptr = tensor(tensor_index)) {
    
    if (tensor_ptr->type == typeToTfLiteType<T>()) {
    
    return reinterpret_cast<T*>(tensor_ptr->data.raw);
    
    }
    
    }
    
    return nullptr;
    
    }
    
    
    // Return a pointer into the data of a given input tensor. The given index
    
    // must be between 0 and inputs().size().
    
    template <class T>
    
    T* typed_input_tensor(int index) {
    
    return typed_tensor<T>(inputs_[index]);
    
    }
    
    
    // Return a pointer into the data of a given output tensor. The given index
    
    // must be between 0 and outputs().size().
    
    template <class T>
    
    T* typed_output_tensor(int index) {
    
    return typed_tensor<T>(outputs_[index]);
    
    }
    
    
    // Change the dimensionality of a given tensor. Note, this is only acceptable
    
    // for tensor indices that are inputs.
    
    // Returns status of failure or success.
    
    // TODO(aselle): Consider implementing ArraySlice equivalent to make this
    
    // more adept at accepting data without an extra copy. Use absl::ArraySlice
    
    // if our partners determine that dependency is acceptable.
    
    TfLiteStatus ResizeInputTensor(int tensor_index,
    
    const std::vector<int>& dims);
    
    
    // Update allocations for all tensors. This will redim dependent tensors using
    
    // the input tensor dimensionality as given. This is relatively expensive.
    
    // If you know that your sizes are not changing, you need not call this.
    
    
    // Returns status of success or failure.
    
    TfLiteStatus AllocateTensors();
    
    
    // Invoke the interpreter (run the whole graph in dependency(依赖) order).
    
    //
    
    // NOTE: It is possible that the interpreter is not in a ready state
    
    // to evaluate (i.e. if a ResizeTensor() has been performed without an
    
    // AllocateTensors().
    
    // Returns status of success or failure.
    
    TfLiteStatus Invoke(); //调用,感觉这个是个最重点的函数
    
    
    // Enable or disable the NN API (true to enable)
    
    void UseNNAPI(bool enable);
    
    
    // Set the number of threads available to the interpreter.
    
    void SetNumThreads(int num_threads);
    
    
    // Allow a delegate to look at the graph and modify the graph to handle
    
    // parts of the graph themselves. After this is called, the graph may
    
    // contain new nodes that replace 1 more nodes.
    
    TfLiteStatus ModifyGraphWithDelegate(TfLiteDelegate* delegate);
    
    
    // Retrieve an operator's description of its work, for profiling purposes.
    
    const char* OpProfilingString(const TfLiteRegistration& op_reg,
    
    const TfLiteNode* node) const {
    
    // haili TODO:
    
    //if (op_reg.profiling_string == nullptr) return nullptr;
    
    //return op_reg.profiling_string(&context_, node);
    
    return nullptr;
    
    }
    
    
    void SetProfiler(profiling::Profiler* profiler) { profiler_ = profiler; }
    
    
    profiling::Profiler* GetProfiler() { return profiler_; }
    
    
    private:
    
    // Give 'op_reg' a chance to initialize itself using the contents of
    
    // 'buffer'.
    
    void* OpInit(const TfLiteRegistration& op_reg, const char* buffer,
    
    size_t length) {
    
    if (op_reg.init == nullptr) return nullptr;
    
    return op_reg.init(&context_, buffer, length);
    
    }
    
    
    // Let 'op_reg' release any memory it might have allocated via 'OpInit'.
    
    void OpFree(const TfLiteRegistration& op_reg, void* buffer) {
    
    if (op_reg.free == nullptr) return;
    
    if (buffer) {
    
    op_reg.free(&context_, buffer);
    
    }
    
    }
    
    
    // Prepare the given 'node' for execution.
    
    TfLiteStatus OpPrepare(const TfLiteRegistration& op_reg, TfLiteNode* node) {
    
    if (op_reg.prepare == nullptr) return kTfLiteOk;
    
    return op_reg.prepare(&context_, node);
    
    }
    
    
    // Invoke the operator represented by 'node'.
    
    TfLiteStatus OpInvoke(const TfLiteRegistration& op_reg, TfLiteNode* node) {
    
    if (op_reg.invoke == nullptr) return kTfLiteError;
    
    return op_reg.invoke(&context_, node);
    
    }
    
    
    // Call OpPrepare() for as many ops as possible, allocating memory for their
    
    // tensors. If an op containing dynamic tensors is found, preparation will be
    
    // postponed until this function is called again. This allows the interpreter
    
    // to wait until Invoke() to resolve the sizes of dynamic tensors.
    
    TfLiteStatus PrepareOpsAndTensors();
    
    
    // Call OpPrepare() for all ops starting at 'first_node'. Stop when a
    
    // dynamic tensors is found or all ops have been prepared. Fill
    
    // 'last_node_prepared' with the id of the op containing dynamic tensors, or
    
    // the last in the graph.
    
    TfLiteStatus PrepareOpsStartingAt(int first_execution_plan_index,
    
    int* last_execution_plan_index_prepared);
    
    
    // Tensors needed by the interpreter. Use `AddTensors` to add more blank
    
    // tensor entries. Note, `tensors_.data()` needs to be synchronized to the
    
    // `context_` whenever this std::vector is reallocated. Currently this
    
    // only happens in `AddTensors()`.
    
    std::vector<TfLiteTensor> tensors_;
    
    
    // Check if an array of tensor indices are valid with respect to the Tensor
    
    // array.
    
    // NOTE: this changes consistent_ to be false if indices are out of bounds.
    
    TfLiteStatus CheckTensorIndices(const char* label, const int* indices,
    
    int length);
    
    
    // Compute the number of bytes required to represent a tensor with dimensions
    
    // specified by the array dims (of length dims_size). Returns the status code
    
    // and bytes.
    
    TfLiteStatus BytesRequired(TfLiteType type, const int* dims, int dims_size,
    
    size_t* bytes);
    
    
    // Request an tensor be resized implementation. If the given tensor is of
    
    // type kTfLiteDynamic it will also be allocated new memory.
    
    TfLiteStatus ResizeTensorImpl(TfLiteTensor* tensor, TfLiteIntArray* new_size);
    
    
    // Report a detailed error string (will be printed to stderr).
    
    // TODO(aselle): allow user of class to provide alternative destinations.
    
    void ReportErrorImpl(const char* format, va_list args);
    
    
    // Entry point for C node plugin API to request an tensor be resized.
    
    static TfLiteStatus ResizeTensor(TfLiteContext* context, TfLiteTensor* tensor,
    
    TfLiteIntArray* new_size);
    
    // Entry point for C node plugin API to report an error.
    
    static void ReportError(TfLiteContext* context, const char* format, ...);
    
    
    // Entry point for C node plugin API to add new tensors.
    
    static TfLiteStatus AddTensors(TfLiteContext* context, int tensors_to_add,
    
    int* first_new_tensor_index);
    
    
    // WARNING: This is an experimental API and subject to change.
    
    // Entry point for C API ReplaceSubgraphsWithDelegateKernels
    
    static TfLiteStatus ReplaceSubgraphsWithDelegateKernels(
    
    TfLiteContext* context, TfLiteRegistration registration,
    
    const TfLiteIntArray* nodes_to_replace);
    
    
    // Update the execution graph to replace some of the nodes with stub
    
    // nodes. Specifically any node index that has `nodes[index]==1` will be
    
    // slated for replacement with a delegate kernel specified by registration.
    
    // WARNING: This is an experimental interface that is subject to change.
    
    TfLiteStatus ReplaceSubgraphsWithDelegateKernels(
    
    TfLiteRegistration registration, const TfLiteIntArray* nodes_to_replace);
    
    
    // WARNING: This is an experimental interface that is subject to change.
    
    // Gets the internal pointer to a TensorFlow lite node by node_index.
    
    TfLiteStatus GetNodeAndRegistration(int node_index, TfLiteNode** node,
    
    TfLiteRegistration** registration);
    
    
    // WARNING: This is an experimental interface that is subject to change.
    
    // Entry point for C node plugin API to get a node by index.
    
    static TfLiteStatus GetNodeAndRegistration(struct TfLiteContext*,
    
    int node_index, TfLiteNode** node,
    
    TfLiteRegistration** registration);
    
    
    // WARNING: This is an experimental interface that is subject to change.
    
    // Gets an TfLiteIntArray* representing the execution plan. The caller owns
    
    // this memory and must free it with TfLiteIntArrayFree().
    
    TfLiteStatus GetExecutionPlan(TfLiteIntArray** execution_plan);
    
    
    // WARNING: This is an experimental interface that is subject to change.
    
    // Entry point for C node plugin API to get the execution plan
    
    static TfLiteStatus GetExecutionPlan(struct TfLiteContext* context,
    
    TfLiteIntArray** execution_plan);
    
    
    // A pure C data structure used to communicate with the pure C plugin
    
    // interface. To avoid copying tensor metadata, this is also the definitive
    
    // structure to store tensors.
    
    TfLiteContext context_;
    
    
    // Node inputs/outputs are stored in TfLiteNode and TfLiteRegistration stores
    
    // function pointers to actual implementation.
    
    std::vector<std::pair<TfLiteNode, TfLiteRegistration>>
    
    nodes_and_registration_;
    
    
    // Whether the model is consistent. That is to say if the inputs and outputs
    
    // of every node and the global inputs and outputs are valid indexes into
    
    // the tensor array.
    
    bool consistent_ = true;
    
    
    // Whether the model is safe to invoke (if any errors occurred this
    
    // will be false).
    
    bool invokable_ = false;
    
    
    // Array of indices representing the tensors that are inputs to the
    
    // interpreter.
    
    std::vector<int> inputs_;
    
    
    // Array of indices representing the tensors that are outputs to the
    
    // interpreter.
    
    std::vector<int> outputs_;
    
    
    // The error reporter delegate that tflite will forward queries errors to.
    
    ErrorReporter* error_reporter_;
    
    
    // Index of the next node to prepare.
    
    // During Invoke(), Interpreter will allocate input tensors first, which are
    
    // known to be fixed size. Then it will allocate outputs from nodes as many
    
    // as possible. When there is a node that produces dynamic sized tensor.
    
    // Intepreter will stop allocating tensors, set the value of next allocate
    
    // node id, and execute the node to generate the output tensor before continue
    
    // to allocate successors. This process repeats until all nodes are executed.
    
    // NOTE: this relies on the order of nodes that is in topological order.
    
    int next_execution_plan_index_to_prepare_;
    
    
    // WARNING: This is an experimental interface that is subject to change.
    
    // This is a list of node indices (to index into nodes_and_registration).
    
    // This represents a valid topological sort (dependency ordered) execution
    
    // plan. In particular, it is valid for this ordering to contain only a
    
    // subset of the node indices.
    
    std::vector<int> execution_plan_;
    
    
    // In the future, we'd like a TfLiteIntArray compatible representation.
    
    // TODO(aselle): replace execution_plan_ with this.
    
    std::unique_ptr<TfLiteIntArray, TfLiteIntArrayDeleter> plan_cache_;
    
    
    // Whether to delegate to NN API
    
    std::unique_ptr<NNAPIDelegate> nnapi_delegate_;
    
    
    std::unique_ptr<MemoryPlanner> memory_planner_;
    
    
    // Profiler for this interpreter instance.
    
    profiling::Profiler* profiler_;
    
    };

构建OpResolver

 
  1. #ifndef TENSORFLOW_CONTRIB_LITE_KERNELS_REGISTER_H_
    
    #define TENSORFLOW_CONTRIB_LITE_KERNELS_REGISTER_H_
    
    
    #include <unordered_map>
    
    #include "tensorflow/contrib/lite/context.h"
    
    #include "tensorflow/contrib/lite/model.h"
    
    
    namespace tflite {
    
    namespace ops {
    
    namespace builtin {
    
    //OpResolver 是父类
    
    class BuiltinOpResolver : public OpResolver {//OpResolver负责维护函数和指针之间的对应关系
    
    public:
    
    BuiltinOpResolver();
    
    TfLiteRegistration* FindOp(tflite::BuiltinOperator op) const override;
    
    TfLiteRegistration* FindOp(const char* op) const override;
    
    void AddBuiltin(tflite::BuiltinOperator op, TfLiteRegistration* registration);
    
    void AddCustom(const char* name, TfLiteRegistration* registration);
    
    
    private:
    
    struct BuiltinOperatorHasher {
    
    size_t operator()(const tflite::BuiltinOperator& x) const {
    
    return std::hash<size_t>()(static_cast<size_t>(x));
    
    }
    
    };
    
    std::unordered_map<tflite::BuiltinOperator, TfLiteRegistration*,
    
    BuiltinOperatorHasher>
    
    builtins_;
    
    std::unordered_map<std::string, TfLiteRegistration*> custom_ops_;
    
    };
    
    
    } // namespace builtin
    
    } // namespace ops
    
    } // namespace tflite
    
    
    #endif // TENSORFLOW_CONTRIB_LITE_KERNELS_BUILTIN_KERNELS_H

完整的RunInference函数如下:

 
  1. double get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); }
    
    
    void RunInference(Settings* s) {
    
    if (!s->model_name.c_str()) {
    
    LOG(ERROR) << "no model file name\n";
    
    exit(-1);
    
    }
    
    
    std::unique_ptr<tflite::FlatBufferModel> model;
    
    std::unique_ptr<tflite::Interpreter> interpreter;
    
    // 1、建立模型
    
    /*
    
    public:
    
    // Builds a model based on a file. Returns a nullptr in case of failure.
    
    static std::unique_ptr<FlatBufferModel> BuildFromFile(
    
    const char* filename,
    
    ErrorReporter* error_reporter = DefaultErrorReporter());
    
    */
    
    model = tflite::FlatBufferModel::BuildFromFile(s->model_name.c_str());
    
    if (!model) {
    
    LOG(FATAL) << "\nFailed to mmap model " << s->model_name << "\n";
    
    exit(-1);
    
    }
    
    LOG(INFO) << "Loaded model " << s->model_name << "\n";
    
    /* ErrorReporter* error_reporter() const { return error_reporter_; }*/
    
    model->error_reporter();
    
    LOG(INFO) << "resolved reporter\n";
    
    //2)建立OpResolver 用于指向每个node的操作函数 tflite::ops::builtin::BuiltinOpResolver resolver;
    
    tflite::ops::builtin::BuiltinOpResolver resolver;
    
    
    //3)建立解释器 tflite::InterpreterBuilder(*model, resolver)(&interpreter);
    
    /*
    
    // Builds an interpreter given only the raw flatbuffer Model object (instead
    
    // of a FlatBufferModel). Mostly used for testing.
    
    // If `error_reporter` is null, then DefaultErrorReporter() is used.
    
    InterpreterBuilder(const ::tflite::Model* model, const OpResolver& op_resolver, ErrorReporter* error_reporter = DefaultErrorReporter());
    
    传入的第二个参数是引用,实际上有好几个构造函数,maybe this is true or not
    
    */
    
    // 构建之后生成的是class Interpreter
    
    tflite::InterpreterBuilder(*model, resolver)(&interpreter); // 后面这样的操作可能是将interperter赋值给他,我去,忘得差不多了
    
    if (!interpreter) {
    
    LOG(FATAL) << "Failed to construct interpreter\n";
    
    exit(-1);
    
    }
    
    //4)对解释器进行参数设置包括
    
    interpreter->UseNNAPI(s->accel);
    
    
    // 具体可以看class Interpreter里剩下的函数
    
    if (s->verbose) {
    
    LOG(INFO) << "tensors size: " << interpreter->tensors_size() << "\n";
    
    LOG(INFO) << "nodes size: " << interpreter->nodes_size() << "\n";
    
    LOG(INFO) << "inputs: " << interpreter->inputs().size() << "\n";
    
    LOG(INFO) << "input(0) name: " << interpreter->GetInputName(0) << "\n";
    
    
    int t_size = interpreter->tensors_size();
    
    for (int i = 0; i < t_size; i++) {
    
    // tensor()是TFliteTensor的格式
    
    // 模型中的tensor会被加载成TFliteTensor的格式
    
    if (interpreter->tensor(i)->name)
    
    LOG(INFO) << i << ": " << interpreter->tensor(i)->name << ", "
    
    << interpreter->tensor(i)->bytes << ", "
    
    << interpreter->tensor(i)->type << ", "
    
    << interpreter->tensor(i)->params.scale << ", "
    
    << interpreter->tensor(i)->params.zero_point << "\n";
    
    }
    
    }
    
    
    if (s->number_of_threads != -1) {
    
    interpreter->SetNumThreads(s->number_of_threads);
    
    }
    
    
    // 5)bmp文件读入并进行必要的resize
    
    int image_width = 224;
    
    int image_height = 224;
    
    int image_channels = 3;
    
    // examples/label_image/bitmap_helpers.cc 可以借鉴一下
    
    uint8_t* in = read_bmp(s->input_bmp_name, &image_width, &image_height,
    
    &image_channels, s);
    
    
    // 为什么只取第一个数据呢?
    
    int input = interpreter->inputs()[0];
    
    if (s->verbose) LOG(INFO) << "input: " << input << "\n";
    
    
    /*
    
    // Array of indices representing the tensors that are inputs to the
    
    // interpreter.
    
    std::vector<int> inputs_;
    
    
    // Array of indices representing the tensors that are outputs to the
    
    // interpreter.
    
    std::vector<int> outputs_;
    
    */
    
    const std::vector<int> inputs = interpreter->inputs();
    
    const std::vector<int> outputs = interpreter->outputs();
    
    
    if (s->verbose) {
    
    LOG(INFO) << "number of inputs: " << inputs.size() << "\n";
    
    LOG(INFO) << "number of outputs: " << outputs.size() << "\n";
    
    }
    
    /*
    
    // Returns status of success or failure.
    
    TfLiteStatus AllocateTensors();
    
    */
    
    if (interpreter->AllocateTensors() != kTfLiteOk) {
    
    LOG(FATAL) << "Failed to allocate tensors!";
    
    }
    
    
    //打印运行参数相关信息
    
    //optional_debug_tools.cc +72
    
    if (s->verbose) PrintInterpreterState(interpreter.get());
    
    
    // get input dimension from the input tensor metadata
    
    // assuming one input only
    
    /*
    
    // Fixed size list of integers. Used for dimensions and inputs/outputs tensor
    
    // indices
    
    typedef struct {
    
    int size;
    
    // gcc 6.1+ have a bug where flexible members aren't properly handled
    
    // https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
    
    #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
    
    __GNUC_MINOR__ >= 1
    
    int data[0];
    
    #else
    
    int data[];
    
    #endif
    
    } TfLiteIntArray;
    
    */
    
    TfLiteIntArray* dims = interpreter->tensor(input)->dims;
    
    int wanted_height = dims->data[1];
    
    int wanted_width = dims->data[2];
    
    int wanted_channels = dims->data[3];
    
    
    // 大胆假设是将这些数据都转换成tensor指定的type的类型
    
    switch (interpreter->tensor(input)->type) {
    
    case kTfLiteFloat32:
    
    s->input_floating = true;
    
    resize<float>(interpreter->typed_tensor<float>(input), in, image_height,
    
    image_width, image_channels, wanted_height, wanted_width, wanted_channels, s);
    
    break;
    
    case kTfLiteUInt8:
    
    resize<uint8_t>(interpreter->typed_tensor<uint8_t>(input), in,
    
    image_height, image_width, image_channels, wanted_height,wanted_width, wanted_channels, s);
    
    break;
    
    default:
    
    LOG(FATAL) << "cannot handle input type "
    
    << interpreter->tensor(input)->type << " yet";
    
    exit(-1);
    
    }
    
    
    struct timeval start_time, stop_time;
    
    gettimeofday(&start_time, NULL);
    
    //运行模型及获得运行时间
    
    for (int i = 0; i < s->loop_count; i++) {
    
    if (interpreter->Invoke() != kTfLiteOk) {
    
    LOG(FATAL) << "Failed to invoke tflite!\n";
    
    }
    
    }
    
    gettimeofday(&stop_time, NULL);
    
    LOG(INFO) << "invoked \n";
    
    LOG(INFO) << "average time: "
    
    << (get_us(stop_time) - get_us(start_time)) / (s->loop_count * 1000)
    
    << " ms \n";
    
    
    const int output_size = 1000;
    
    const size_t num_results = 5;
    
    const float threshold = 0.001f;
    
    
    std::vector<std::pair<float, int>> top_results;
    
    
    // 为什么也是取第一个数据呢?
    
    int output = interpreter->outputs()[0];
    
    //获取输出,和上面类似,格式化输出数据的类型
    
    switch (interpreter->tensor(output)->type) {
    
    case kTfLiteFloat32:
    
    get_top_n<float>(interpreter->typed_output_tensor<float>(0), output_size,
    
    num_results, threshold, &top_results, true);
    
    break;
    
    case kTfLiteUInt8:
    
    get_top_n<uint8_t>(interpreter->typed_output_tensor<uint8_t>(0),
    
    output_size, num_results, threshold, &top_results,
    
    false);
    
    break;
    
    default:
    
    LOG(FATAL) << "cannot handle output type "
    
    << interpreter->tensor(input)->type << " yet";
    
    exit(-1);
    
    }
    
    
    //加载label并显示对应输出结果
    
    std::vector<string> labels;
    
    size_t label_count;
    
    
    //vi examples/label_image/label_image.cc +52
    
    // 读取标签文件
    
    if (ReadLabelsFile(s->labels_file_name, &labels, &label_count) != kTfLiteOk)
    
    exit(-1);
    
    
    // first是float的数据
    
    // secound是int的数据
    
    for (const auto& result : top_results) {
    
    const float confidence = result.first;
    
    const int index = result.second;
    
    LOG(INFO) << confidence << ": " << index << " " << labels[index] << "\n";
    
    }
    
    }

读取lable文件是自己定义:

 
  1. // Takes a file name, and loads a list of labels from it, one per line, and
    
    // returns a vector of the strings. It pads with empty strings so the length
    
    // of the result is a multiple of 16, because our model expects that.
    
    TfLiteStatus ReadLabelsFile(const string& file_name,
    
    std::vector<string>* result,
    
    size_t* found_label_count) {
    
    std::ifstream file(file_name);
    
    if (!file) {
    
    LOG(FATAL) << "Labels file " << file_name << " not found\n";
    
    return kTfLiteError;
    
    }
    
    result->clear();
    
    string line;
    
    while (std::getline(file, line)) {
    
    result->push_back(line);
    
    }
    
    *found_label_count = result->size();
    
    const int padding = 16;
    
    while (result->size() % padding) {
    
    result->emplace_back();
    
    }
    
    return kTfLiteOk;
    
    }

 类似资料:

相关阅读

相关文章

相关问答