当前位置: 首页 > 工具软件 > Free-SA > 使用案例 >

Cats(1)- 从Free开始,Free cats

廉展鹏
2023-12-01

  cats是scala的一个新的函数式编程工具库,其设计原理基本继承了scalaz:大家都是haskell typeclass的scala版实现。当然,cats在scalaz的基础上从实现细节、库组织结构和调用方式上进行了一些优化,所以对用户来说:cats的基础数据类型、数据结构在功能上与scalaz是大致相同的,可能有一些语法上的变化。与scalaz著名抽象、复杂的语法表现形式相比,cats的语法可能更形象、简单直白。在scalaz的学习过程中,我们了解到所谓函数式编程就是monadic Programming:即用monad这样的数据类型来构建程序。而实际可行的monadic programming就是用Free-Monad编程了。因为Free-Monad程序是真正可运行的,或者说是可以实现安全运行的,因为它可以保证在固定的堆栈内实现无限运算。我们知道:函数式编程模式的运行方式以递归算法为主,flatMap函数本身就是一种递归算法。这就预示着monadic programming很容易造成堆栈溢出问题(StackOverflowError)。当我们把普通的泛函类型F[A]升格成Free-Monad后就能充分利用Free-Monad安全运算能力来构建实际可运行的程序了。由于我们在前面已经详细的了解了scalaz的大部分typeclass,包括Free,对cats的讨论就从Free开始,聚焦在cats.Free编程模式方面。同时,我们可以在使用cats.Free的过程中对cats的其它数据类型进行补充了解。

cats.Free的类型款式如下:

sealed abstract class Free[S[_], A] extends Product with Serializable {...}

S是个高阶类,就是一种函数式运算。值得注意的是:现在S不需要是个Functor了。因为Free的一个实例Suspend类型是这样的:

/** Suspend the computation with the given suspension. */
  private final case class Suspend[S[_], A](a: S[A]) extends Free[S, A]


我们不需要map就可以把F[A]升格成Free:

/**
   * Suspend a value within a functor lifting it to a Free.
   */
  def liftF[F[_], A](value: F[A]): Free[F, A] = Suspend(value)


我们在scalaz.Free的讨论中并没能详尽地分析在什么情况下S[_]必须是个Functor。下面我们需要用一些篇幅来解析。

Free程序的特点是算式(description)/算法(implementation)关注分离(separation of concern):我们用一组数据类型来模拟一种编程语句ADT(algebraic data type),这一组ADT就形成了一种定制的编程语言DSL(domain specific language)。Free的编程部分就是用DSL来描述程序功能(description of purpose),即算式了。算法即用DSL描述的功能的具体实现,可以有多种的功能实现方式。我们先看个简单的DSL:

import cats.free._
import cats.Functor
object catsFree {
  object ADTs {
    sealed trait Interact[+A]
    object Interact {
      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]
      
      def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt))
      def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg))


      implicit object interactFunctor extends Functor[Interact]  {
        def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ???
      /*   ia match {
           case Ask(p) => ???
           case Tell(m) => ???
        } */
      }  
    }
  }
  object DSLs {
    import ADTs._
    import Interact._
    val prg: Free[Interact,Unit] = for {
      first <- ask("What's your first name?")
      last <- ask("What's your last name?")
      _ <- tell(s"Hello $first $last")
    } yield()
  }


在这个例子里Interact并不是一个Functor,因为我们无法获取Interact Functor实例的map函数。先让我们分析一下Functor的map:

     implicit object interactFunctor extends Functor[Interact]  {
        def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ia match {
           case Ask(p) => ???
           case Tell(m) => ???
        }
      }


map的作用是用一个函数A => B把F[A]转成F[B]。也就是把语句状态从F[A]转成F[B],但在Interact的情况里F[B]已经是明确的Interact[Unit]和Interact[String]两种状态,而map的f是A => B,在上面的示范里我们该如何施用f来获取这个Interact[B]呢?从上面的示范里我们观察可以得出Ask和Tell这两个ADT纯粹是为了模拟ask和tell这两个函数。ask和tell分别返回Free版本的String,Unit结果。可以说:Interact并没有转换到下一个状态的要求。那么假如我们把ADT调整成下面这样呢:

      sealed trait FunInteract[NS]
      object FunInteract {
        case class FunAsk[NS](prompt: String, onInput: String =>  NS) extends FunInteract[NS]
        case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS]
        
        def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity))
        def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt))
        def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,()))
        
        implicit object funInteract extends Functor[FunInteract] {
           def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match {
              case FunAsk(prompt,input) => FunAsk(prompt,input andThen f)
              case FunTell(msg,ns) => FunTell(msg,f(ns))
           }
        }
      }


现在这两个ADT是有类型参数NS的了:FunAsk[NS],FunTell[NS]。NS代表了ADT当前类型,如FunAsk[Int]、FunTell[String]...,现在这两个ADT都通过类型参数NS变成了可map的对象了,如FunAsk[String] >>> FunAsk[String], FunAsk[String] >>> FunAsk[Int]...。所以我们可以很顺利的实现object funInteract的map函数。但是,一个有趣的现象是:为了实现这种状态转换,如果ADT需要返回操作结果,就必须具备一个引领状态转换的机制,如FunAsk类型里的onInput: String => NS:它代表funAsk函数返回的结果可以指向下一个状态。新增函数funAskInt是个很好的示范:通过返回的String结果将状态转换到FunAsk[Int]状态。函数funTell不返回结果,所以FunTell没有状态转换机制。scalaz旧版本Free.Suspend的类型款式是:Suspend[F[Free,A]],这是一个递归类型,内部的Free代表下一个状态。由于我们必须用F.map才能取出下一个状态,所以F必须是个Functor。我们应该注意到如果ADT是Functor的话会造成Free程序的冗余代码。既然cats.Free对F[A]没有设置Functor门槛,那么我们应该尽量避免使用Functor。

得出对ADT类型要求结论后,我们接着示范cats的Free编程。下面是Free程序的功能实现interpret部分(implementation):

    import ADTs._
    object iconsole extends (Interact ~> Id) {
      def apply[A](ia: Interact[A]): Id[A] = ia match {
         case Ask(p) => {println(p); readLine}
         case Tell(m) => println(m)
      }
    }
  }

DSL程序的功能实现就是把ADT F[A]对应到实际的指令集G[A],在Free编程里用NaturalTransformation ~>来实现。注意G[A]必须是个Monad。在上面的例子里对应关系是:Interact~>Id,代表直接对应到运算指令println和readLine。我们也可以实现另一个版本:

    type Prompt = String
    type Reply = String
    type Message = String
    type Tester[A] = Map[Prompt,Reply] => (List[Message],A)
    object tester extends (Interact ~> Tester) {
      def apply[A](ia: Interact[A]): Tester[A] = ia match {
        case Ask(p) => { m => (List(), m(p)) }
        case Tell(m) => { _ => (List(m), ()) }
      }
    }
    import cats.Monad
    implicit val testerMonad = new Monad[Tester] {
      override def pure[A](a: A): Tester[A] = _ => (List(),a)
      override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {
        val (o1,a1) = ta(m)
        val (o2,a2) = f(a1)(m)
        (o1 ++ o2, a2)
      }
      override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
         defaultTailRecM(a)(f)
    }
  }


上面是个模拟测试:我们用个Map[K,V]来模拟互动,K模拟问prompt,V模拟获取回答Input。测试方式是个Function1,输入测试数据Map,在List[Message]里返回所有Tell产生的信息。上面提到过Tester[A]必须是个Monad,所以我们实现了Tester的Monad实例testMonad。实际上 m=>(List,a)就是个writer函数。所谓的Writer就是包嵌一个对值pair(L,V)的Monad,L代表Log,V代表运算值。Writer的特性就是log所有V的运算过程。我们又可以用Writer来实现这个tester:

   import cats.data.WriterT
    type WF[A] = Map[Prompt,Reply] => A
    type WriterTester[A] = WriterT[WF,List[Message],A]
    def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) =
    WriterT[WF,List[Message],A](f)
    object testWriter extends (Interact ~> WriterTester) {
      import Interact._
      def apply[A](ia: Interact[A]): WriterTester[A] = ia match {
        case Ask(p) => testerToWriter(m => (List(),m(p)))
        case Tell(m) => testerToWriter(_ => (List(m),()))
      }
    }


如果我们用Writer来实现Interact,实际上就是把Ask和Tell都升格成Writer类型。

我们再来看看在cats里是如何运算Free DSL程序的。相对scalaz而言,cats的运算函数简单的多,就一个foldMap,我们来看看它的定义:

/**
   * Catamorphism for `Free`.
   *
   * Run to completion, mapping the suspension with the given
   * transformation at each step and accumulating into the monad `M`.
   *
   * This method uses `tailRecM` to provide stack-safety.
   */
  final def foldMap[M[_]](f: FunctionK[S, M])(implicit M: Monad[M], r: RecursiveTailRecM[M]): M[A] =
    r.sameType(M).tailRecM(this)(_.step match {
      case Pure(a) => M.pure(Right(a))
      case Suspend(sa) => M.map(f(sa))(Right(_))
      case FlatMapped(c, g) => M.map(c.foldMap(f))(cc => Left(g(cc)))
    })


除了要求M是个Monad之外,cats还要求M的RecursiveTailRecM隐式实例。那么什么是RecursiveTailRecM呢:

/**
 * This is a marker type that promises that the method
 * .tailRecM for this type is stack-safe for arbitrary recursion.
 */
trait RecursiveTailRecM[F[_]] extends Serializable {
  /*
   * you can call RecursiveTailRecM[F].sameType(Monad[F]).tailRec
   * to have a static check that the types agree
   * for safer usage of tailRecM
   */
  final def sameType[M[_[_]]](m: M[F]): M[F] = m
}


我们用RecursiveTailRecM来保证这个Monad类型与tailRecM是匹配的,这是一种运算安全措施,所以在foldMap函数里r.sameType(M).tailRecM保证了tailRecM不会造成StackOverflowError。cats.Free里还有一种不需要类型安全检验的函数foldMapUnsafe:

/**
   * Same as foldMap but without a guarantee of stack safety. If the recursion is shallow
   * enough, this will work
   */
  final def foldMapUnsafe[M[_]](f: FunctionK[S, M])(implicit M: Monad[M]): M[A] =
    foldMap[M](f)(M, RecursiveTailRecM.create)


这个函数不需要RecursiveTailRecM。下面我们选择能保证运算安全的方法来运算tester:首先我们需要Tester类型的Monad和RecursiveTailRecM实例:

    import cats.Monad
    implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{
      override def pure[A](a: A): Tester[A] = _ => (List(),a)
      override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {
        val (o1,a1) = ta(m)
        val (o2,a2) = f(a1)(m)
        (o1 ++ o2, a2)
      }
      override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
        defaultTailRecM(a)(f)
    }

然后我们制造一些测试数据:

  val testData = Map("What's your first name?" -> "Tiger",
  "What's your last name?" -> "Chan")             //> testData  : scala.collection.immutable.Map[String,String] = Map(What's your first name? -> Tiger, What's your last name? -> Chan)


测试运算:

import ADTs._,DSLs._,IMPLs._
   val testData = Map("What's your first name?" -> "Tiger",
  "What's your last name?" -> "Chan")    //> testData  : scala.collection.immutable.Map[String,String] = Map(What's your first name? -> Tiger, What's your last name? -> Chan)
  val prgRunner = prg.foldMap(tester)    //> prgRunner  : demo.ws.catsFree.IMPLs.Tester[Unit] = <function1>
  prgRunner(testData)                    //> res0: (List[demo.ws.catsFree.IMPLs.Message], Unit) = (List(Hello Tiger Chan),())

那么如果运算testWriter呢?我们先取得WriterT的Monad实例:

   implicit val testWriterMonad =  WriterT.catsDataMonadWriterForWriterT[WF,List[Message]]


然后构建一个RecursiveTailRecM实例后再用同样的测试数据来运算:

 implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{}
           //> testWriterRecT  : cats.RecursiveTailRecM[demo.ws.catsFree.IMPLs.WriterTester] = demo.ws.catsFree$$anonfun$main$1$$anon$2@6093dd95
  val prgRunner = prg.foldMap(testWriter)         //> prgRunner  : demo.ws.catsFree.IMPLs.WriterTester[Unit] = WriterT(<function1>)
  prgRunner.run(testData)._1.map(println)         //> Hello Tiger Chan
                                                  //| res0: List[Unit] = List(())
 


运算结果一致。

我们再示范一下cats官方文件里关于free monad例子:模拟一个KVStore的put,get,delete功能。ADT设计如下:

  object ADTs {
    sealed trait KVStoreA[+A]
    case class Put[T](key: String, value: T) extends KVStoreA[Unit]
    case class Get[T](key: String) extends KVStoreA[Option[T]]
    case class Del(key: String) extends KVStoreA[Unit]
  }


对应的模拟功能函数设计如下:

    type KVStore[A] = Free[KVStoreA,A]
    object KVStoreA {
      def put[T](key: String, value: T): KVStore[Unit] =
        Free.liftF[KVStoreA,Unit](Put[T](key,value))
      def get[T](key: String): KVStore[Option[T]] =
        Free.liftF[KVStoreA,Option[T]](Get[T](key))
      def del(key: String): KVStore[Unit] =
        Free.liftF[KVStoreA,Unit](Del(key))
      def mod[T](key: String, f: T => T): KVStore[Unit] =
        for {
          opt <- get[T](key)
          _ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(()))
        } yield()
    }

注意一下mod函数:它是由基础函数get和put组合而成。我们要求所有在for内的类型为Free[KVStoreA,?],所以当f函数施用后如果opt变成None时就返回结果Free.pure(()),它的类型是:Free[Nothing,Unit],Nothing是KVStoreA的子类。

现在我们可以用这个DSL来编制KVS程序了:

 object DSLs {
    import ADTs._
    import KVStoreA._
    def prg: KVStore[Option[Int]] =
    for {
      _ <- put[Int]("wild-cats", 2)
      _ <- mod[Int]("wild-cats", (_ + 12))
      _ <- put[Int]("tame-cats", 5)
      n <- get[Int]("wild-cats")
      _ <- del("tame-cats")
    } yield n
  }

我们可以通过State数据结纯代码(pure code)方式来实现用immutable map的KVStore:

 object IMPLs {
    import ADTs._
    import cats.{~>}
    import cats.data.State
   
    type KVStoreState[A] = State[Map[String, Any], A]
    val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) {
      def apply[A](fa: KVStoreA[A]): KVStoreState[A] =
        fa match {
          case Put(key, value) => State { (s:Map[String, Any]) =>
             (s.updated(key, value),()) }
          case Get(key) => State { (s:Map[String, Any]) =>
            (s,s.get(key).asInstanceOf[A]) }
          case Del(key) => State { (s:Map[String, Any]) =>
              (s - key, (())) }
        }
    }
  }
 


我们把KVStoreA ADT模拟成对State结构的S转换(mutation),返回State{S=>(S,A)}。KVStoreState[A]类型的S参数为immutable.Map[String, Any],所以我们在S转换操作时用immutable map的操作函数来构建新的map返回,典型的pure code。我们来运算一下KVStoreA程序:

  import ADTs._,DSLs._,IMPLs._
  val prgRunner = prg.foldMap(kvsToState)    //> prgRunner  : demo.ws.catsFreeKVS.IMPLs.KVStoreState[Option[Int]] = cats.data.StateT@2cfb4a64
  prgRunner.run(Map.empty).value       //> res0: (Map[String,Any], Option[Int]) = (Map(wild-cats -> 14),Some(14))


但是难道不需要Monad、RecursiveTailRecM实例了吗?实际上cats已经提供了State的Monad和RecursiveTailRecM实例:

  import cats.{Monad,RecursiveTailRecM}
  implicitly[Monad[KVStoreState]]      //> res1: cats.Monad[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.data.StateT Instances$$anon$2@71bbf57e
  implicitly[RecursiveTailRecM[KVStoreState]]     //> res2: cats.RecursiveTailRecM[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.RecursiveTailRecM$$anon$1@7f13d6e


在cats的StateT.scala里可以找到这段代码:

private[data] sealed trait StateTInstances2 {
  implicit def catsDataMonadForStateT[F[_], S](implicit F0: Monad[F]): Monad[StateT[F, S, ?]] =
    new StateTMonad[F, S] { implicit def F = F0 }

  implicit def catsDataRecursiveTailRecMForStateT[F[_]: RecursiveTailRecM, S]: RecursiveTailRecM[StateT[F, S, ?]] = RecursiveTailRecM.create[StateT[F, S, ?]]

  implicit def catsDataSemigroupKForStateT[F[_], S](implicit F0: Monad[F], G0: SemigroupK[F]): SemigroupK[StateT[F, S, ?]] =
    new StateTSemigroupK[F, S] { implicit def F = F0; implicit def G = G0 }
}


我把上面两个示范的源代码提供在下面:

Interact:

import cats.free._
import cats.{Functor, RecursiveTailRecM}
object catsFree {
  object ADTs {
    sealed trait Interact[+A]
    object Interact {
      case class Ask(prompt: String) extends Interact[String]
      case class Tell(msg: String) extends Interact[Unit]

      def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt))
      def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg))


      implicit object interactFunctor extends Functor[Interact]  {
        def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ???
        /*   ia match {
             case Ask(p) => ???
             case Tell(m) => ???
          } */
      }

      sealed trait FunInteract[NS]
      object FunInteract {
        case class FunAsk[NS](prompt: String, onInput: String =>  NS) extends FunInteract[NS]
        case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS]

        def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity))
        def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt))
        def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,()))

        implicit object funInteract extends Functor[FunInteract] {
          def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match {
            case FunAsk(prompt,input) => FunAsk(prompt,input andThen f)
            case FunTell(msg,ns) => FunTell(msg,f(ns))
          }
        }
      }
    }
  }
  object DSLs {
    import ADTs._
    import Interact._
    val prg: Free[Interact,Unit] = for {
      first <- ask("What's your first name?")
      last <- ask("What's your last name?")
      _ <- tell(s"Hello $first $last")
    } yield()
  }
  object IMPLs {
    import cats.{Id,~>}
    import ADTs._
    import Interact._
    object iconsole extends (Interact ~> Id) {
      def apply[A](ia: Interact[A]): Id[A] = ia match {
        case Ask(p) => {println(p); readLine}
        case Tell(m) => println(m)
      }
    }

    type Prompt = String
    type Reply = String
    type Message = String
    type Tester[A] = Map[Prompt,Reply] => (List[Message],A)
    object tester extends (Interact ~> Tester) {
      def apply[A](ia: Interact[A]): Tester[A] = ia match {
        case Ask(p) => { m => (List(), m(p)) }
        case Tell(m) => { _ => (List(m), ()) }
      }
    }
    import cats.Monad
    implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{
      override def pure[A](a: A): Tester[A] = _ => (List(),a)
      override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {
        val (o1,a1) = ta(m)
        val (o2,a2) = f(a1)(m)
        (o1 ++ o2, a2)
      }
      override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
        defaultTailRecM(a)(f)
    }
    import cats.data.WriterT
    import cats.instances.all._
    type WF[A] = Map[Prompt,Reply] => A
    type WriterTester[A] = WriterT[WF,List[Message],A]
    def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) =
      WriterT[WF,List[Message],A](f)
    implicit val testWriterMonad =  WriterT.catsDataMonadWriterForWriterT[WF,List[Message]]
    object testWriter extends (Interact ~> WriterTester) {
      import Interact._
      def apply[A](ia: Interact[A]): WriterTester[A] = ia match {
        case Ask(p) => testerToWriter(m => (List(),m(p)))
        case Tell(m) => testerToWriter(_ => (List(m),()))
      }
    }
  }

  import ADTs._,DSLs._,IMPLs._
   val testData = Map("What's your first name?" -> "Tiger",
  "What's your last name?" -> "Chan")
  //val prgRunner = prg.foldMap(tester)
  //prgRunner(testData)
  implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{}
  val prgRunner = prg.foldMap(testWriter)
  prgRunner.run(testData)._1.map(println)
}


KVStore:

import cats.free._
import cats.instances.all._
object catsFreeKVS {
  object ADTs {
    sealed trait KVStoreA[+A]
    case class Put[T](key: String, value: T) extends KVStoreA[Unit]
    case class Get[T](key: String) extends KVStoreA[Option[T]]
    case class Del(key: String) extends KVStoreA[Unit]
    type KVStore[A] = Free[KVStoreA,A]
    object KVStoreA {
      def put[T](key: String, value: T): KVStore[Unit] =
        Free.liftF[KVStoreA,Unit](Put[T](key,value))
      def get[T](key: String): KVStore[Option[T]] =
        Free.liftF[KVStoreA,Option[T]](Get[T](key))
      def del(key: String): KVStore[Unit] =
        Free.liftF[KVStoreA,Unit](Del(key))
      def mod[T](key: String, f: T => T): KVStore[Unit] =
        for {
          opt <- get[T](key)
          _ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(()))
        } yield()
    }
  }
  object DSLs {
    import ADTs._
    import KVStoreA._
    def prg: KVStore[Option[Int]] =
    for {
      _ <- put[Int]("wild-cats", 2)
      _ <- mod[Int]("wild-cats", (_ + 12))
      _ <- put[Int]("tame-cats", 5)
      n <- get[Int]("wild-cats")
      _ <- del("tame-cats")
    } yield n
  }
  object IMPLs {
    import ADTs._
    import cats.{~>}
    import cats.data.State
   
    type KVStoreState[A] = State[Map[String, Any], A]
    val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) {
      def apply[A](fa: KVStoreA[A]): KVStoreState[A] =
        fa match {
          case Put(key, value) => State { (s:Map[String, Any]) =>
             (s.updated(key, value),()) }
          case Get(key) => State { (s:Map[String, Any]) =>
            (s,s.get(key).asInstanceOf[A]) }
          case Del(key) => State { (s:Map[String, Any]) =>
              (s - key, (())) }
        }
    }
  }
  import ADTs._,DSLs._,IMPLs._
  val prgRunner = prg.foldMap(kvsToState)
  prgRunner.run(Map.empty).value
  
  import cats.{Monad,RecursiveTailRecM}
  implicitly[Monad[KVStoreState]]
  implicitly[RecursiveTailRecM[KVStoreState]]
}





























 类似资料: