我试图用wxMaxima和sympy来求解以下不定积分:integrate(r^2*sqrt(R^2-r^2),r)
在马克西马,我确实得到了答案,但在同情中没有。我不明白为什么。我是Python的超级用户,我很喜欢用Python做符号数学,但是由于sympy没有解决这个问题,我仍然坚持使用Maxima。在
是我做错了什么,还是马克西姆好些了?
(我在Mathematica也解决了这个问题)
我在wxMaxima得到了以下答案:
^{pr2}$
给出了这个答案:g:(R^4*asin(r/abs(R)))/8-(r*(R^2-r^2)^(3/2))/4+(r*R^2*sqrt(R^2-r^2))/8
它看起来很难看,但别提了。这里的重点是,sympy不能解这个积分。试着用这个代码来解决同样的问题:import sympy as sy
import math
R,r = sy.symbols('R r')
g = sy.integrate(r**2*(R**2-r**2)**0.5,r)
print g
给出以下错误消息:Traceback (most recent call last):
File "E:\UD\Software\BendStiffener\calculate-moment\moment-calculation-equations\sympy-test.py", line 4, in
g = sy.integrate(r**2*(R**2-r**2)**0.5,r)
File "C:\Python27\lib\site-packages\sympy\utilities\decorator.py", line 35, in threaded_func
return func(expr, *args, **kwargs)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 1232, in integrate
risch=risch, manual=manual)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 487, in doit
conds=conds)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 876, in _eval_integral
h = meijerint_indefinite(g, x)
File "C:\Python27\lib\site-packages\sympy\integrals\meijerint.py", line 1596, in meijerint_indefinite
res = _meijerint_indefinite_1(f.subs(x, x + a), x)
File "C:\Python27\lib\site-packages\sympy\integrals\meijerint.py", line 1646, in _meijerint_indefinite_1
r = hyperexpand(r.subs(t, a*x**b))
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2482, in hyperexpand
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1351, in replace
rv = bottom_up(self, rec_replace, atoms=True)
File "C:\Python27\lib\site-packages\sympy\simplify\simplify.py", line 4082, in bottom_up
rv = F(rv)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1336, in rec_replace
new = _value(expr, result)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1280, in
_value = lambda expr, result: value(*expr.args)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2479, in do_meijer
allow_hyper, rewrite=rewrite)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2375, in _meijergexpand
t, 1/z0)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2335, in do_slater
resid = residue(integrand, s, b_ + r)
File "C:\Python27\lib\site-packages\sympy\series\residues.py", line 57, in residue
s = expr.series(x, n=0)
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2435, in series
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx)
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2442, in series
s1 = self._eval_nseries(x, n=n, logx=logx)
File "C:\Python27\lib\site-packages\sympy\core\mul.py", line 1446, in _eval_nseries
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2639, in nseries
return self._eval_nseries(x, n=n, logx=logx)
File "C:\Python27\lib\site-packages\sympy\functions\special\gamma_functions.py", line 168, in _eval_nseries
return super(gamma, self)._eval_nseries(x, n, logx)
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 598, in _eval_nseries
term = e.subs(x, S.Zero)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 892, in subs
rv = rv._subs(old, new, **kwargs)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1006, in _subs
rv = fallback(self, old, new)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 983, in fallback
rv = self.func(*args)
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 382, in __new__
return result.evalf(mlib.libmpf.prec_to_dps(pr))
File "C:\Python27\lib\site-packages\sympy\core\evalf.py", line 1317, in evalf
result = evalf(self, prec + 4, options)
File "C:\Python27\lib\site-packages\sympy\core\evalf.py", line 1217, in evalf
re, im = x._eval_evalf(prec).as_real_imag()
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 486, in _eval_evalf
v = func(*args)
File "C:\Python27\lib\site-packages\sympy\mpmath\ctx_mp_python.py", line 993, in f
return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
File "C:\Python27\lib\site-packages\sympy\mpmath\libmp\gammazeta.py", line 1947, in mpf_gamma
raise ValueError("gamma function pole")
ValueError: gamma function pole