concurrent queue or blocking queue implemented in cpp
Guide
introduction
Where produce-consumer pattern is present it is often the case that one is faster that the other:
a parsing producer reads records faster than a processing consumer;
a disk reading producer is faster than network sending consumer.
Producer and consumer often communicate by queues: the producer will put items on a queue while the consumer will pop items off a queue. What happens when the queue becomes full, or empty?
One approach of the producer is to try to put an item on a queue and if it’s full yield the thread and repeat. Similarly the consumer can try to pop an item off a queue and if it’s empty, ditto. This approach of try-fail-yield can unnecessarily burn CPU cycles in tight loops that constantly try to put or pop items off a queue.
Another approach is to temporarily grow the queue, but that doesn’t scale well. When do we stop growing? And once we stop we have to fall back onto the try-fail-yield method.
What if we could implement a blocking queue:
a queue who’s put operation blocks when the queue if full, and unblocks only when another thread pops an item off the queue
Similarly a queue who’s pop operation blocks when the queue is empty, and unblocks only when another thread puts an item on the queue.
Quote from here
An example of using such a queue would look like this (notice a fast producer and slow consumer in the code below):
blocking queue v1
//std
#include
//boost
#include
#include
#include
namespace my {
namespace algorithm {
template
class SHARED_EXPORT blocking_queue
{
private:
std::queue the_queue;
mutable boost::mutex the_mutex;
boost::condition_variable the_condition_variable;
public:
void push(Data const& data)
{
boost::mutex::scoped_lock lock(the_mutex);
the_queue.push(data);
lock.unlock();
the_condition_variable.notify_one();
}
bool empty() const
{
boost::mutex::scoped_lock lock(the_mutex);
return the_queue.empty();
}
size_t size() const
{
boost::mutex::scoped_lock lock(the_mutex);
return the_queue.size();
}
bool try_pop(Data& popped_value)
{
boost::mutex::scoped_lock lock(the_mutex);
if (the_queue.empty())
{
return false;
}
popped_value = the_queue.front();
the_queue.pop();
return true;
}
void wait_and_pop(Data& popped_value)
{
boost::mutex::scoped_lock lock(the_mutex);
while (the_queue.empty())
{
the_condition_variable.wait(lock);
}
popped_value = the_queue.front();
the_queue.pop();
}
void signal_exit()
{
Data data;
push(data);
}
};
}
}// end namespace
blocking queue v2
#pragma once
#include
#include
#include
#include
#include
#define MAX_CAPACITY 20
namespace my {
namespace algorithm {
template
class SHARED_EXPORT BlockingQueue
{
public:
BlockingQueue()
:mtx(), full_(), empty_(), capacity_(MAX_CAPACITY) { }
void Push(const T& data){
std::unique_lock<:mutex> lock(mtx);
while(queue_.size() == capacity_){
full_.wait(lock );
}
assert(queue_.size() < capacity_);
queue_.push(data);
empty_.notify_all();
}
T Pop(){
std::unique_lock<:mutex> lock(mtx);
while(queue_.empty()){
empty_.wait(lock );
}
assert(!queue_.empty());
T front(queue_.front());
queue_.pop();
full_.notify_all();
return front;
}
T Front(){
std::unique_lock<:mutex> lock(mtx);
while(queue_.empty()){
empty_.wait(lock );
}
assert(!queue_.empty());
T front(queue_.front());
return front;
}
T Back(){
std::unique_lock<:mutex> lock(mtx);
while(queue_.empty()){
empty_.wait(lock );
}
assert(!queue_.empty());
T back(queue_.back());
return back;
}
size_t Size(){
std::lock_guard<:mutex> lock(mtx);
return queue_.size();
}
bool Empty(){
std::unique_lock<:mutex> lock(mtx);
return queue_.empty();
}
void SetCapacity(const size_t capacity){
capacity_ = (capacity > 0 ? capacity : MAX_CAPACITY);
}
private:
//DISABLE_COPY_AND_ASSIGN(BlockingQueue);
BlockingQueue(const BlockingQueue& rhs);
BlockingQueue& operator= (const BlockingQueue& rhs);
private:
mutable std::mutex mtx;
std::condition_variable full_;
std::condition_variable empty_;
std::queue queue_;
size_t capacity_;
};
}
}// end namespace
Reference
History
20191012: created.
Copyright
Post author: kezunlin
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.