详见:https://www.cnblogs.com/wangyong/p/8991465.html
import math
from skimage import io, color
import numpy as np
class Cluster(object):
cluster_index = 1
def __init__(self, row, col, l=0, a=0, b=0):
self.update(row, col, l, a, b)
self.pixels = []
self.no = self.cluster_index
Cluster.cluster_index += 1
def update(self, row, col, l, a, b):
self.row = row
self.col = col
self.l = l
self.a = a
self.b = b
class SLICProcessor(object):
@staticmethod
def open_image(path):
rgb = io.imread(path)
lab_arr = color.rgb2lab(rgb)
return lab_arr
@staticmethod
def save_lab_image(path, lab_arr):
rgb_arr = color.lab2rgb(lab_arr)
io.imsave(path, rgb_arr)
def make_cluster(self, row, col):
row=int(row)
col=int(col)
return Cluster(row, col,
self.data[row][col][0],
self.data[row][col][1],
self.data[row][col][2])
def __init__(self, filename, K, M):
self.K = K
self.M = M
self.data = self.open_image(filename)
self.rows = self.data.shape[0]
self.cols = self.data.shape[1]
self.N = self.rows * self.cols
self.S = int(math.sqrt(self.N / self.K))
self.clusters = []
self.label = {}
self.dis = np.full((self.rows, self.cols), np.inf)
def init_clusters(self):
row = self.S / 2
col = self.S / 2
while row < self.rows:
while col < self.cols:
self.clusters.append(self.make_cluster(row, col))
col+= self.S
col = self.S / 2
row += self.S
def get_gradient(self, row, col):
if col + 1 >= self.cols:
col = self.cols - 2
if row + 1 >= self.rows:
row = self.rows - 2
gradient = (self.data[row + 1][col][0] +self.data[row][col+1][0]-2*self.data[row][col][0])+ \
(self.data[row + 1][col][1] +self.data[row][col+1][1]-2*self.data[row][col][1]) + \
(self.data[row + 1][col][2] +self.data[row][col+1][2]-2*self.data[row][col][2])
return gradient
def move_clusters(self):
for cluster in self.clusters:
cluster_gradient = self.get_gradient(cluster.row, cluster.col)
for dh in range(-1, 2):
for dw in range(-1, 2):
_row = cluster.row + dh
_col = cluster.col + dw
new_gradient = self.get_gradient(_row, _col)
if new_gradient < cluster_gradient:
cluster.update(_row, _col, self.data[_row][_col][0], self.data[_row][_col][1], self.data[_row][_col][2])
cluster_gradient = new_gradient
def assignment(self):
for cluster in self.clusters:
for h in range(cluster.row - 2 * self.S, cluster.row + 2 * self.S):
if h < 0 or h >= self.rows: continue
for w in range(cluster.col - 2 * self.S, cluster.col + 2 * self.S):
if w < 0 or w >= self.cols: continue
L, A, B = self.data[h][w]
Dc = math.sqrt(
math.pow(L - cluster.l, 2) +
math.pow(A - cluster.a, 2) +
math.pow(B - cluster.b, 2))
Ds = math.sqrt(
math.pow(h - cluster.row, 2) +
math.pow(w - cluster.col, 2))
D = math.sqrt(math.pow(Dc / self.M, 2) + math.pow(Ds / self.S, 2))
if D < self.dis[h][w]:
if (h, w) not in self.label:
self.label[(h, w)] = cluster
cluster.pixels.append((h, w))
else:
self.label[(h, w)].pixels.remove((h, w))
self.label[(h, w)] = cluster
cluster.pixels.append((h, w))
self.dis[h][w] = D
def update_cluster(self):
for cluster in self.clusters:
sum_h = sum_w = number = 0
for p in cluster.pixels:
sum_h += p[0]
sum_w += p[1]
number += 1
_h =int( sum_h / number)
_w =int( sum_w / number)
cluster.update(_h, _w, self.data[_h][_w][0], self.data[_h][_w][1], self.data[_h][_w][2])
def save_current_image(self, name):
image_arr = np.copy(self.data)
for cluster in self.clusters:
for p in cluster.pixels:
image_arr[p[0]][p[1]][0] = cluster.l
image_arr[p[0]][p[1]][1] = cluster.a
image_arr[p[0]][p[1]][2] = cluster.b
image_arr[cluster.row][cluster.col][0] = 0
image_arr[cluster.row][cluster.col][1] = 0
image_arr[cluster.row][cluster.col][2] = 0
self.save_lab_image(name, image_arr)
def iterates(self):
self.init_clusters()#均匀分配块的位置
self.move_clusters()#一开始略调块的中心,选择区域中梯度最小的位置作为中心
#考虑到效率和效果,折中选择迭代10次
for i in range(10):
self.assignment()#每次计算聚类中心周围2*S范围内的像素点,根据相似性划分
self.update_cluster()#添加一些莫名其妙的像素点,我的理解是如果周围的像素点都属于某一个聚类,那么该像素点应该也属于这个聚类
self.save_current_image("output.jpg")
if __name__ == '__main__':
p = SLICProcessor('x1.png', 160, 40)
p.iterates()