至少在现阶段内存和CPU的执行效率在固定时间内是有限的,大量的数据的查重和去重处理不可能同时在内存中进行。就像外部排序算法和内部排序算法差别很大,遇到此类大量数据查重问题对算法进行设计是有必要的。
数据量不大的时候可以采用concurrentHashMap来操作,在内存中对数据进行同步的CRUD操作。
这种做法的好处是很明显的,逻辑处理很简单易懂。但是会产生大量的小对象,小对象会存放在新生代,新生代一般采用复制算法,大量不消亡的小对象在每次GC的时候都对JVM的性能产生灾难性的影响。这是我们不能接受的。
布隆过滤器是一种采用hash法进行查重的工具。它将每一条数据进行n次独立的hash处理,每次处理得到一个整数,总共得到n个整数。使用一个很长的数组表示不同的整数,每一次插入操作把这n个整数对应的位置的0设置为1(如果已经被设置为1则不变)。下次查找的时候经过同样的计算,如果这几个位置都是1则说明已经存在。
布隆过滤器的优点是使用方便,因为并不将key存放进内存所以十分节省空间,多个hash算法无关,可以并发执行效率高。缺点也是显而易见的,这种算法是可能出现错误,有误判率这种概念。通过hash的次数我们可以降低误判率,但是不能保证没有误判的情况。
比如有2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
一个数字的状态只有三种,分别为不存在,只有一个,有重复。因此,我们只需要2bits就可以对一个数字的状态进行存储了,假设我们设定一个数字不存在为00,存在一次01,存在两次及其以上为11。那我们大概需要存储空间几十兆左右。接下来的任务就是遍历一次这2.5亿个数字,如果对应的状态位为00,则将其变为01;如果对应的状态位为01,则将其变为11;如果为11,,对应的转态位保持不变。
最后,我们将状态位为01的进行统计,就得到了不重复的数字个数,时间复杂度为O(n)。
如果有两份50G的数据,要查重,内存4G,怎么查?
想法是先将50G的数据分别做hash%1000,分成1000个文件,理论上hash做得好那么这1000个文件的大小是差不多接近的。如果有重复,那么A和B的重复数据一定在相对同一个文件内,因为hash结果是一样的。将1000个文件分别加载进来,一一比对是否有hash重复。这种想法是先把所有数据按照相关性进行分组,相关的数据会处于同样或者接近的位置中,再将小文件进行对比。
有1千万条短信,找出重复出现最多的前10条?
可以用哈希表的方法对1千万条分成若干组进行边扫描边建散列表。第一次扫描,取首字节,尾字节,中间随便两字节作为Hash Code,插入到hash table中。并记录其地址和信息长度和重复次数,1千万条信息,记录这几个信息还放得下。同Hash Code且等长就疑似相同,比较一下。相同记录只加1次进hash table,但将重复次数加1。一次扫描以后,已经记录各自的重复次数,进行第二次hash table的处理。用线性时间选择可在O(n)的级别上完成前10条的寻找。分组后每份中的top10必须保证各不相同,可hash来保证,也可直接按hash值的大小来分类。