从1开始往上数数,当遇到3的倍数的时候,说fizz,当遇到5的倍数,说buzz,当遇到15的倍数,就说fizzbuzz,其他情况下则正常数数。
# One-hot encode the desired outputs: [number, "fizz", "buzz", "fizzbuzz"]
def fizz_buzz_encode(i):
if i % 15 == 0: return 3
elif i % 5 == 0: return 2
elif i % 3 == 0: return 1
else: return 0
def fizz_buzz_decode(i, prediction):
#[str(i), "fizz", "buzz", "fizzbuzz"]为一个列表,里面有4个元素,对应为四类,可用索引来访问
return [str(i), "fizz", "buzz", "fizzbuzz"][prediction]
print(fizz_buzz_decode(1, fizz_buzz_encode(1)))
print(fizz_buzz_decode(2, fizz_buzz_encode(2)))
print(fizz_buzz_decode(5, fizz_buzz_encode(5)))
print(fizz_buzz_decode(12, fizz_buzz_encode(12)))
print(fizz_buzz_decode(15, fizz_buzz_encode(15)))
import numpy as np
import torch
NUM_DIGITS = 10
# Represent each input by an array of its binary digits.
def binary_encode(i, num_digits):
return np.array([i >> d & 1 for d in range(num_digits)])
trX = torch.Tensor([binary_encode(i, NUM_DIGITS) for i in range(101, 2 ** NUM_DIGITS)])
trY = torch.LongTensor([fizz_buzz_encode(i) for i in range(101, 2 ** NUM_DIGITS)])
# Define the model
NUM_HIDDEN = 100
model = torch.nn.Sequential(
torch.nn.Linear(NUM_DIGITS, NUM_HIDDEN),
torch.nn.ReLU(),
torch.nn.Linear(NUM_HIDDEN, 4)
)
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.05)
# Start training it
BATCH_SIZE = 128
for epoch in range(10000):
for start in range(0, len(trX), BATCH_SIZE):
end = start + BATCH_SIZE
batchX = trX[start:end]
batchY = trY[start:end]
y_pred = model(batchX)
loss = loss_fn(y_pred, batchY)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Find loss on training data
loss = loss_fn(model(trX), trY).item()
print('Epoch:', epoch, 'Loss:', loss)
# Output now
testX = torch.Tensor([binary_encode(i, NUM_DIGITS) for i in range(1, 101)])
with torch.no_grad():
testY = model(testX)
predictions = zip(range(1, 101), list(testY.max(1)[1].data.tolist()))
print([fizz_buzz_decode(i, x) for (i, x) in predictions])