当前位置: 首页 > 工具软件 > Detector > 使用案例 >

detector_test

唐元凯
2023-12-01


#define __WINDOWS__ 1
#define __PTHREAD__ 1
//#define MNIST_PATH "E:\\ebLearn\\mnist"
#include "libidx.h"
#include "libeblearn.h"
#include "libeblearntools.h"
//#include "netconf.h"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace ebl;
uint dump_count = 0;

string *gl_data_dir = NULL;
string *gl_data_errmsg = NULL;
void test_face();

int main(int argc,char** argv)
{
	if (strlen(DATA_PATH) > 0) gl_data_dir = new string(DATA_PATH);
	  gl_data_errmsg =
      new string("Data directory is unknown, some tests will be ignored");
	  test_face();
	  if (gl_data_dir) delete gl_data_dir;
	  if (gl_data_errmsg) delete gl_data_errmsg;
	return 0;
}

void test_face() 
{
    typedef float t_net;
 
    string name = "nens.gif";
    string confname, imagename, root, ebl;
    root << *gl_data_dir << "/face/";
    ebl << *gl_data_dir << "/../../";
    confname << root << "best.conf";
    imagename << root << name;
    idx<ubyte> im = load_image<ubyte>(imagename);
    configuration conf;
    conf.read(confname.c_str(), false, false, true);
	conf.set("display_sleep","2000");
    conf.set("root2", root.c_str());
    conf.set("current_dir", root.c_str());
    conf.set("ebl", ebl.c_str());
    conf.resolve(true);
    ebl::mutex mut;
    detection_thread<t_net> dt(conf, &mut, "detection thread");
    bboxes bboxes;
    idx<ubyte> detframe;
    idx<uint> total_saved(1);
    string processed_fname;
    uint cnt = 0;

    dt.start();
    while (!dt.set_data(im, imagename, name, cnt)) millisleep(5);
    bool updated = false;
    while (!updated) 
	{
      updated = dt.get_data(bboxes, detframe, *(total_saved.idx_ptr()),
			    processed_fname);
      millisleep(5);
    }
    millisleep(2);
    dt.stop(true);
}


 

 

实验:

#define __WINDOWS__ 1
#define __PTHREAD__ 1
//#define __GUI__ 1
//#define MNIST_PATH "E:\\ebLearn\\mnist"
#include "libidx.h"
#include "libeblearn.h"
#include "libeblearntools.h"
//#include "libidxgui.h"
//#include "netconf.h"
//#ifdef __GUI__
//#include "libeblearngui.h"
//#endif
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace ebl;
uint dump_count = 0;

string *gl_data_dir = NULL;
string *gl_data_errmsg = NULL;
void test_face();

//#ifdef __GUI__
//MAIN_QTHREAD(int, argc, char**, argv) {
//#else
int main(int argc,char** argv)
{
//#endif
	if (strlen(DATA_PATH) > 0) gl_data_dir = new string(DATA_PATH);
	  gl_data_errmsg =
      new string("Data directory is unknown, some tests will be ignored");
	  test_face();
	  if (gl_data_dir) delete gl_data_dir;
	  if (gl_data_errmsg) delete gl_data_errmsg;
	return 0;
}


void test_face() 
{
    typedef float t_net;
 
    string name = "nens.gif";
    string confname, frame_name, root, ebl;
    root << *gl_data_dir << "/face/";
    ebl << *gl_data_dir << "/../../";
    confname << root << "best.conf";
    frame_name << root << name;
    idx<ubyte> frame = load_image<ubyte>(frame_name);
    configuration conf;
    conf.read(confname.c_str(), false, false, true);
	conf.set("display_sleep","2000");
    conf.set("root2", root.c_str());
    conf.set("current_dir", root.c_str());
    conf.set("ebl", ebl.c_str());
    conf.resolve(true);

	// load network and weights in a forward-only parameter
    parameter<float> theparam;
    theparam.set_forward_only();
    idx<ubyte> classes(1,1);
    //try { // try loading classes names but do not stop upon failure
    load_matrix<ubyte>(classes, conf.get_cstring("classes"));
    // } catch(std::string &err) {
    //   merr << "warning: " << err;
    //   merr << std::endl;
    // }
    std::vector<std::string> sclasses = ubyteidx_to_stringvector(classes);
    answer_module<float> *ans = create_answer<float,float,float>(conf, classes.dim(0));
    uint noutputs = ans->get_nfeatures();
    intg thick = -1;
	uint cnt = 0;
    module_1_1<float> *net = create_network<float>(theparam, conf, thick, noutputs,
                                           "arch",cnt);

	// loading weights
    if (conf.exists("weights")) 
	{ // manual weights
      // concatenate weights if multiple ones
      std::vector<std::string> w =
          string_to_stringvector(conf.get_string("weights"));
      cout<< "Loading weights from: " << w << std::endl;
      theparam.load_x(w);
	}
	else
	{
	int seed = dynamic_init_drand();
	forget_param_linear fgp(1, 0.5, seed);
        net->forget(fgp);
	}
	detector<float> detect(*net, sclasses, ans, NULL, NULL);
	bboxes &bb = detect.fprop(frame, frame_name.c_str(), cnt);


	//bboxes boxes(bbox_all, NULL);
	//bboxes *bb = boxes.get_group(frame_name);
 //           idxdim d = boxes.get_group_dims(frame_name);
 //           d.insert_dim(0, 1);
 //           bboxes pruned;
 //           detect.init(d);
 //           detect.fprop_nms(*bb, pruned);
 //           //copy_bboxes(pruned); // make a copy of bounding boxes
 //           // resize frame so that caller knows the size of the frame
 //           idxdim framedim = frame.get_idxdim();
 //           if (d.dim(1) == -1 || d.dim(2) == -1)
 //             eblerror("pre-computed boxes must contain full image size, "
 //                      << "but found: " << d);
 //           framedim.setdim(0, d.dim(1));
 //           framedim.setdim(1, d.dim(2));
 //           frame.resize(framedim);



    /*ebl::mutex mut;
	detection_thread<t_net> dt(conf, &mut, "detection thread");
    bboxes bboxes;
    idx<ubyte> detframe;
    idx<uint> total_saved(1);
    string processed_fname;
    uint cnt = 0;

    dt.start();
    while (!dt.set_data(im, imagename, name, cnt)) millisleep(5);
    bool updated = false;
    while (!updated) 
	{
      updated = dt.get_data(bboxes, detframe, *(total_saved.idx_ptr()),
			    processed_fname);
      millisleep(5);
    }
    millisleep(2);
    dt.stop(true);*/
	if(net) delete net;
	
}


 



#define __WINDOWS__ 1//一定要定义这句
#define __PTHREAD__ 1
#define __GUI__

#include <map>
#include <string>
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <sstream>
#include <iomanip>
#include <time.h>

#include "libidx.h"
#include "libeblearn.h"
#include "libeblearntools.h"
#include "libeblearngui.h"

using namespace std;
using namespace ebl;
//typedef double t_net; // network precision
typedef float t_net; // network precision
unsigned int dump_count = 0;//一定要这句

template <typename T>
std::string get_output_directory(configuration &conf);//获得配置文件 conf 的路径

MAIN_QTHREAD(int, argc, char **, argv) 
{
	configuration	conf(argv[1], true, true, false);
	if (conf.exists_true("fixed_randomization"))
		cout << "Using fixed seed: " << fixed_init_drand() << endl;
    else
		cout << "Using random seed: " << dynamic_init_drand(argc, argv) << endl;

    if (!conf.exists("root2") || !conf.exists("current_dir")) 
	{
		string dir;
		dir << dirname(argv[1]) << "/";
		cout << "Looking for trained files in: " << dir << endl;
		conf.set("root2", dir.c_str());
		conf.set("current_dir", dir.c_str());
    }
	conf.set("run_type", "detect"); // tell conf that we are in detect mode
    conf.resolve(); // manual call to resolving variable
    bool              silent        = conf.exists_true("silent");
    if (conf.exists_true("show_conf") && !silent) 
	{
		conf.pretty();
	}
	string outdir = get_output_directory<t_net>(conf);//outdir为输出路径
    cout << "Saving outputs to " << outdir << endl;
    // save conf to output dir
    string cname = outdir;
    cname << filename(argv[1]);
    if (conf.write(cname.c_str()))
	{
		cout << "Wrote configuration to " << cname << endl;//写配置文件
	}
	
    // load classes of network
	//导入类别信息
    idx<ubyte> classes(1,1);
    vector<string> sclasses;
    try 
	{ // try loading classes names but do not stop upon failure
		load_matrix<ubyte>(classes, conf.get_cstring("classes"));
    } 
	catch(string &err) 
	{ 
		cerr << "warning: " << err << endl; 
	}
    sclasses = ubyteidx_to_stringvector(classes);
	t_bbox_saving bbsaving = bbox_none;
    if (conf.exists("bbox_saving"))
		bbsaving = (t_bbox_saving) conf.get_int("bbox_saving");
    //bboxes boxes(bbsaving, &outdir, cout, cerr);

	bool		save_video    = conf.exists_true("save_video");
	bool              save_detections = conf.exists_true("save_detections");
	int		height        = -1;
	int		width         = -1;
	if (conf.exists("input_height")) height = conf.get_int("input_height");
	if (conf.exists("input_width")) width = conf.get_int("input_width");
	bool              input_random  = conf.exists_true("input_random");
	uint              npasses       = 1;
	char              next_on_key   = 0;
	if (conf.exists("next_on_key")) 
	{
		next_on_key = conf.get_char("next_on_key");
		cout << "Press " << next_on_key << " to process next frame." << endl;
	}
	uint skip_frames = conf.try_get_uint("skip_frames", 0);
	if (conf.exists("input_npasses"))
		npasses = conf.get_uint("input_npasses");
	string viddir;
	if (save_video) 
	{
		viddir << outdir << "video/";
		mkdir_full(viddir);
	}
	bool precomputed_boxes = conf.exists("bbox_file");
	uint save_bbox_period = conf.try_get_uint("save_bbox_period", 500);
	idxdim crop(1, 1, 1);
	if (conf.exists("input_crop"))
	{
		crop = string_to_idxdim(conf.get_string("input_crop"));
	}


	string		cam_type;
	if (conf.exists("camera"))
	{
		cam_type = conf.get_string("camera");
	}


	// image search can be configured with a search pattern
    const char *fpattern = IMAGE_PATTERN_MAT;
    if (conf.exists("file_pattern"))
	{
		fpattern = conf.get_cstring("file_pattern");
	}

    // initialize camera (opencv, directory, shmem or video)
    //idx<ubyte> frame(std::max(height, 1), std::max(width, 1), 3);
    camera<ubyte> *cam = NULL;
    if (!strcmp(cam_type.c_str(), "directory")) 
	{
		string dir;
		if (argc >= 3) // read input dir from command line
			dir = argv[2];
		else if (conf.exists("input_dir"))
			dir = conf.get_string("input_dir");
		// given list
		list<string> files;
		if (conf.exists("input_list")) 
		{
			files = string_to_stringlist(conf.get_string("input_list"));
			cam = new camera_directory<ubyte>(dir.c_str(), height, width,
							input_random, npasses, cout, cerr,
							fpattern, &files);
		} 
		else // given directory only
		{
			  cam = new camera_directory<ubyte>(dir.c_str(), height, width,
								input_random, npasses, cout, cerr,
								fpattern, &files);
		}
	} 


	// answer variables & initializations
		//bboxes bb;
#ifdef __GUI__
	//gui
	bool              bkey_msg      = false; // display key message
	//bool display	     = conf.exists_bool("display");
	bool show_parts        = conf.exists_true("show_parts");
	bool bbox_show_conf = !conf.exists_false("bbox_show_conf");
	bool bbox_show_class = !conf.exists_false("bbox_show_class");
	// mindisplay     = conf.exists_bool("minimal_display");
	uint display_sleep  = 0;
	if (conf.exists("display_sleep"))
	{
		display_sleep = conf.get_uint("display_sleep");
	}
	// display_states = conf.exists_bool("display_states");
	// uint qstep1 = 0, qheight1 = 0, qwidth1 = 0,
	// 	qheight2 = 0, qwidth2 = 0, qstep2 = 0;
	// if (conf.exists_bool("queue1")) {
	// 	qstep1 = conf.get_uint("qstep1");
	// 	qheight1 = conf.get_uint("qheight1");
	// 	qwidth1 = conf.get_uint("qwidth1"); }
	// if (conf.exists_bool("queue2")) {
	// 	qstep2 = conf.get_uint("qstep2");
	// 	qheight2 = conf.get_uint("qheight2");
	// 	qwidth2 = conf.get_uint("qwidth2"); }
	// wid_states  = display_states ? new_window("network states"):0;
	// night_mode();


	//uint wid  = display ? new_window("eblearn object recognition") : 0;//重定义了
	night_mode();
	float display_transp = 0.0;
	if (conf.exists("display_bb_transparency"))
	{
		display_transp = conf.get_float("display_bb_transparency");
	}
	//detector_gui<t_net> dgui(conf.exists_true("show_extracted"));
	//end   gui


	

	uint       wid	       = 0;	// window id
    uint       wid_states     = 0;	// window id

	bool	display        = false;
    display = conf.exists_true("display")
        && conf.exists_true("display_threads");

    bool	mindisplay     = conf.exists_true("minimal_display");
    //bool       save_video     = conf.exists_true("save_video");//70行有定义
    bool	display_states = conf.exists_true("display_states");
    //uint       wid	       = 0;	// window id
    //uint       wid_states     = 0;	// window id
#endif

	
	// load network and weights in a forward-only parameter
	parameter<float> theparam;
	theparam.set_forward_only();

	//try { // try loading classes names but do not stop upon failure
	load_matrix<ubyte>(classes, conf.get_cstring("classes"));
	// } catch(std::string &err) {
	//   merr << "warning: " << err;
	//   merr << std::endl;
	// }
    
	answer_module<float> *ans = create_answer<float,float,float>(conf, classes.dim(0));
	uint noutputs = ans->get_nfeatures();
	intg thick = -1;
	module_1_1<float> *net = create_network<float>(theparam, conf, thick, noutputs,
											"arch", 0);
	// loading weights
	if (conf.exists("weights")) 
	{ // manual weights
		// concatenate weights if multiple ones
		std::vector<std::string> w =
			string_to_stringvector(conf.get_string("weights"));
		cout << "Loading weights from: " << w << std::endl;
		theparam.load_x(w);
		// permute weights by blocks
		if (conf.exists("weights_permutation")) 
		{
			std::string sblocks = conf.get_string("weights_blocks");
			std::string spermut = conf.get_string("weights_permutation");
			std::vector<intg> blocks = string_to_intgvector(sblocks.c_str());
			std::vector<uint> permut = string_to_uintvector(spermut.c_str());
			theparam.permute_x(blocks, permut);
		}
	} 
	else 
	{
		if (conf.exists_true("manual_load")) 
		{ // manual load
			eblwarn("\"weights\" variable not defined, loading manually "
					<< "if manual_load defined");
			manually_load_network(*((layers<float>*)net), conf);
		} 
		else 
		{ // random weights
			int seed = dynamic_init_drand();
			eblwarn("No weights to load, randomizing weights with seed " << seed);
			forget_param_linear fgp(1, 0.5, seed);
			net->forget(fgp);
		}
	}

	// detector
	detector<float> detect(*net, sclasses, ans, NULL, NULL, cout, cerr);
	//初始化detector
	// multi-scaling parameters
	double maxs = conf.try_get_double("max_scale", 2.0);
	double mins = conf.try_get_double("min_scale", 1.0);
	t_scaling scaling_type =
		(t_scaling) conf.try_get_uint("scaling_type", SCALES_STEP);
	double scaling = conf.try_get_double("scaling", 1.4);
	std::vector<midxdim> scales;
	switch (scaling_type) 
	{
		case MANUAL:
			if (!conf.exists("scales"))
		eblerror("expected \"scales\" variable to be defined in manual mode");
			scales = string_to_midxdimvector(conf.get_cstring("scales"));
			detect.set_resolutions(scales);
			break ;
		case ORIGINAL: detect.set_scaling_original(); break ;
		case SCALES_STEP:
			detect.set_resolutions(scaling, maxs, mins);
			break ;
		case SCALES_STEP_UP:
			detect.set_resolutions(scaling, maxs, mins);
			detect.set_scaling_type(scaling_type);
			break ;
		default:
			detect.set_scaling_type(scaling_type);
	}

	// remove pads from target scales if requested
	if (conf.exists_true("scaling_remove_pad")) detect.set_scaling_rpad(true);
	// optimize memory usage by using only 2 buffers for entire flow
	state<float> input(1, 1, 1), output(1, 1, 1);
	if (!conf.exists_false("mem_optimization"))
		detect.set_mem_optimization(input, output, true);
	// TODO: always keep inputs, otherwise detection doesnt work. fix this.
	// 				   conf.exists_true("save_detections") ||
	// 				   (display && !mindisplay));
	// zero padding
	float hzpad = conf.try_get_float("hzpad", 0);
	float wzpad = conf.try_get_float("wzpad", 0);
	detect.set_zpads(hzpad, wzpad);
	if (conf.exists("input_min")) // limit inputs size
		detect.set_min_resolution(conf.get_uint("input_min"));
	if (conf.exists("input_max")) // limit inputs size
		detect.set_max_resolution(conf.get_uint("input_max"));
	if (silent) detect.set_silent();
	if (conf.exists_bool("save_detections")) 
	{
		std::string detdir = outdir;
		detdir += "detections";
		uint nsave = conf.try_get_uint("save_max_per_frame", 0);
		bool diverse = conf.exists_true("save_diverse");
		detdir = detect.set_save(detdir, nsave, diverse);
	}
	detect.set_scaler_mode(conf.exists_true("scaler_mode"));
	if (conf.exists("bbox_decision"))
		detect.set_bbox_decision(conf.get_uint("bbox_decision"));
	if (conf.exists("bbox_scalings")) 
	{
		mfidxdim scalings =
		string_to_fidxdimvector(conf.get_cstring("bbox_scalings"));
		detect.set_bbox_scalings(scalings);
	}

	// nms configuration //
	t_nms nms_type = (t_nms) conf.try_get_uint("nms", 0);
	float pre_threshold = conf.try_get_float("pre_threshold", 0.0);
	float post_threshold = conf.try_get_float("post_threshold", 0.0);
	float pre_hfact = conf.try_get_float("pre_hfact", 1.0);
	float pre_wfact = conf.try_get_float("pre_wfact", 1.0);
	float post_hfact = conf.try_get_float("post_hfact", 1.0);
	float post_wfact = conf.try_get_float("post_wfact", 1.0);
	float woverh = conf.try_get_float("woverh", 1.0);
	float max_overlap = conf.try_get_float("max_overlap", 0.0);
	float max_hcenter_dist = conf.try_get_float("max_hcenter_dist", 0.0);
	float max_wcenter_dist = conf.try_get_float("max_wcenter_dist", 0.0);
	float vote_max_overlap = conf.try_get_float("vote_max_overlap", 0.0);
	float vote_mhd = conf.try_get_float("vote_max_hcenter_dist", 0.0);
	float vote_mwd = conf.try_get_float("vote_max_wcenter_dist", 0.0);
	detect.set_nms(nms_type, pre_threshold, post_threshold, pre_hfact,
					pre_wfact, post_hfact, post_wfact, woverh, max_overlap,
					max_hcenter_dist, max_wcenter_dist, vote_max_overlap,
					vote_mhd, vote_mwd);
	if (conf.exists("raw_thresholds")) 
	{
		std::string srt = conf.get_string("raw_thresholds");
		std::vector<float> rt = string_to_floatvector(srt.c_str());
		detect.set_raw_thresholds(rt);
	}
	if (conf.exists("outputs_threshold"))
		detect.set_outputs_threshold(conf.get_double("outputs_threshold"),
										conf.try_get_double("outputs_threshold_val",
															-1));
	///
	if (conf.exists("netdims")) 
	{
		idxdim d = string_to_idxdim(conf.get_string("netdims"));
		detect.set_netdim(d);
	}
	if (conf.exists("smoothing")) 
	{
		idxdim ker;
		if (conf.exists("smoothing_kernel"))
			ker = string_to_idxdim(conf.get_string("smoothing_kernel"));
		detect.set_smoothing(conf.get_uint("smoothing"),
								conf.try_get_double("smoothing_sigma", 1),
								&ker,
								conf.try_get_double("smoothing_sigma_scale", 1));
	}
	if (conf.exists("background_name"))
		detect.set_bgclass(conf.get_cstring("background_name"));
	if (conf.exists_true("bbox_ignore_outsiders"))
		detect.set_ignore_outsiders();
	if (conf.exists("corners_inference"))
		detect.set_corners_inference(conf.get_uint("corners_inference"));
	if (conf.exists("input_gain"))
		detect.set_input_gain(conf.get_double("input_gain"));
	if (conf.exists_true("dump_outputs")) 
	{
		std::string fname;
		fname << outdir << "/dump/detect_out";
		detect.set_outputs_dumping(fname.c_str());
	}
	//初始化结束


	bootstrapping<float> boot(conf);
	// when a bbox file is given, ignore the processing, load the pre-computed
	// bboxes and feed them to the nms (non-maximum suppression).
	bboxes boxes(bbox_all, NULL, cout, cerr);//注意这里与前面的boxes重复
	boxes.print_saving_type(); // inform user how we save boxes
	//bool precomputed_boxes = false;
	if (conf.exists("bbox_file")) 
	{
		precomputed_boxes = true;
		std::string bbfile = conf.get_string("bbox_file");
		boxes.load_eblearn(bbfile);
	}
	bool bmask_class = false;
	if (conf.exists("mask_class"))
		bmask_class = detect.set_mask_class(conf.get_cstring("mask_class"));

	//std::string viddir = outdir;
	//viddir += "video/";
	//mkdir_full(viddir);

#ifdef __GUI__
	//定义GUI相关的
	uint display_wmax = conf.try_get_uint("display_max_width", 3000);
    float display_min = (float) conf.try_get_double("display_min", -1.7);
    float display_max = (float) conf.try_get_double("display_max", 1.7);
    float display_in_max = (float) conf.try_get_double("display_in_max", 255);
    float display_in_min = (float) conf.try_get_double("display_in_min", 0);
    //float display_transp = conf.try_get_float("display_bb_transparency", 0);
    uint qstep1 = conf.try_get_uint("qstep1", 0);
    uint qheight1 = conf.try_get_uint("qheight1", 0);
    uint qwidth1 = conf.try_get_uint("qwidth1", 0);
    uint qstep2 = conf.try_get_uint("qstep2", 0);
    uint qheight2 = conf.try_get_uint("qheight2", 0);
    uint qwidth2 = conf.try_get_uint("qwidth2", 0);
    module_1_1_gui	netgui;
    wid_states  = display_states ? new_window("network states"):0;
    night_mode();
    std::string title = "EBLearn detector: ";
    if (display) 
	{
      wid = new_window(title.c_str());
      cout << "displaying in window " << wid << std::endl;
      night_mode();
    }
    float zoom = conf.try_get_float("display_zoom", 1);
    //bool bbox_show_conf = !conf.exists_false("bbox_show_conf");
    //bool bbox_show_class = !conf.exists_false("bbox_show_class");
    detector_gui<float>
        dgui(conf.try_get_uint("show_extracted", 0),
             conf.exists_bool("queue1"), qstep1, qheight1,
             qwidth1, conf.exists_bool("queue2"), qstep2, qheight2, qwidth2,
             bbox_show_class, bbox_show_conf);
    if (bmask_class)
      dgui.set_mask_class(conf.get_cstring("mask_class"),
                          (float) conf.try_get_double("mask_threshold", 0));
	//结束定义
#endif


	idx<ubyte> frame;// frame returned by detection thread
	for(int i=0;i<cam->size();i++)
	{
		uint frame_id = 0;
	
		//bool frame_grabbed = false;
		frame_id = cam->frame_id();
		frame = cam->grab();
		//frame_grabbed = true;
		// send new frame to this thread
		string frame_fullname= cam->frame_fullname();
		string frame_name= cam->frame_name();
			// fprop and display
		if (precomputed_boxes) eblerror("not implemented for nms only (TODO)");
		disable_window_updates();
		select_window(wid);
		clear_window();
		set_window_title(title.c_str());
		// extract & display boxes
		bboxes bb =
				dgui.display_inputs_outputs(detect, frame, frame_name.c_str(),
											frame_id, 0, 0, zoom,
											display_min, display_max, wid,
											outdir.c_str(),
											display_in_min, display_in_max,
											display_transp, display_wmax);
		// make a copy of bounding boxes
		if (display_sleep > 0) 
		{
			cout << "sleeping for " << display_sleep << "ms." << std::endl;
			millisleep(display_sleep);
		}
		cam->next();
	}
	//gui

	

	// free variables
    if (net) delete net;
    if (ans) delete ans;
	if (cam) delete cam;
	return 0;
}

template <typename T>
std::string get_output_directory(configuration &conf) 
{
  std::string s;
  if (conf.exists("output_dir")) s << conf.get_string("output_dir");
  else s << conf.get_string("current_dir");
  if (conf.exists("detections_dir"))
    s << conf.get_string("detections_dir");
  else 
  {
    s << "/detections";
    if (conf.exists_true("nms")) s << "_" << tstamp();
  }
  s << "/";
  mkdir_full(s);
  return s;
}


 类似资料:

相关阅读

相关文章

相关问答