package main
import (
"io"
"net/http"
)
func hello(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "hello world\n")
}
func main() {
http.HandleFunc("/hello", hello)
http.ListenAndServe(":8080", nil)
}
使用下面命令启动
go run main.go
这时候我们打开浏览器访问localhost:8080/hello
,就可以看到hello world
我们还有另外一种添加方式:
type helloHandler struct {}
func (h *helloHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "hello world\n")
}
func main() {
http.Handle("/hello", &helloHandler{})
http.ListenAndServe(":8080", nil)
}
http.HandleFunc(pattern string, handler func(ResponseWriter, *Request))
第二个参数是一个Handler, net/http库提供了一些常用handler的默认实现,可以进行直接调用。
比如文件服务器:
http.ListenAndServe(":12345", http.FileServer(http.Dir(".")))
在实际开发中一个HTTP接口会有许多的URL对应的Handler,这时候就需要路由的参与。net/http库中ServeMux(mux是multiplexor缩写)帮我们实现了这个功能。
package main
import (
"io"
"net/http"
)
func header(w http.ResponseWriter, r *http.Request) {
encoding := r.Header["Accept-Encoding"]
var encodingStr []byte
for _, value := range encoding {
encodingStr = append(encodingStr, []byte(value)...)
}
w.Write(encodingStr)
}
func hello(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "hello world\n")
}
func main() {
mux := http.NewServeMux()
mux.HandleFunc("/header", header)
mux.HandleFunc("/hello", hello)
http.ListenAndServe(":8080", mux)
}
先通过http.NewServeMux()
返回一个ServeMux结构体,然后调用mux.HandleFunc()
绑定Handler到对应的URL上。
其实http.HandleFunc()内部调用的是DefaultServeMux.HandleFunc(pattern, handler)
,这是一个默认的ServeMux
// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = &defaultServeMux
var defaultServeMux ServeMux
从http.HandleFunc()
看起
// HandleFunc registers the handler function for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
这里面只有一行,调用DefaultServeMux.HandleFunc(pattern, handler)
// HandleFunc registers the handler function for the given pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
if handler == nil {
panic("http: nil handler")
}
mux.Handle(pattern, HandlerFunc(handler))
}
进入这个函数看,调用了mux.Handle(pattern, HandlerFunc(handler))
,我们接着进入这个函数看。
// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
mux.mu.Lock()
defer mux.mu.Unlock()
if pattern == "" {
panic("http: invalid pattern")
}
if handler == nil {
panic("http: nil handler")
}
if _, exist := mux.m[pattern]; exist {
panic("http: multiple registrations for " + pattern)
}
if mux.m == nil {
mux.m = make(map[string]muxEntry)
}
e := muxEntry{h: handler, pattern: pattern}
mux.m[pattern] = e
if pattern[len(pattern)-1] == '/' {
mux.es = appendSorted(mux.es, e)
}
if pattern[0] != '/' {
mux.hosts = true
}
}
这里需要参考一下ServeMux结构体
type ServeMux struct {
mu sync.RWMutex
m map[string]muxEntry
es []muxEntry // slice of entries sorted from longest to shortest.
hosts bool // whether any patterns contain hostnames
}
type muxEntry struct {
h Handler
pattern string
}
mux.Handle(pattern, handler)
主要作用是将路由URL与Handler绑定,然后存到一个map中,URL作为map的键。
if pattern[len(pattern)-1] == '/' {
mux.es = appendSorted(mux.es, e)
}
判断pattern是否是以 '/'结尾,如果是以 '/'结尾后面可以跟其他子路径,如果不是表示的是一个叶子节点。
func appendSorted(es []muxEntry, e muxEntry) []muxEntry {
n := len(es)
i := sort.Search(n, func(i int) bool {
return len(es[i].pattern) < len(e.pattern)
})
if i == n {
return append(es, e)
}
// we now know that i points at where we want to insert
es = append(es, muxEntry{}) // try to grow the slice in place, any entry works.
copy(es[i+1:], es[i:]) // Move shorter entries down
es[i] = e
return es
}
sort.Search()
找es中是否有比e.pattern中长度更短的,如果找到返回第一次出现的下标,没找到返回n;如果没有找到就添加到muxEntry中返回,如果有就将e.pattern插入找到的i的位置。
es是ServeMux用来进行路由匹配的,采用的是最长匹配原则,也就是说如果有多个匹配项匹配最长的。所以es存的时候将路径长度长的放在前面,这样检索起来效率比较高,我觉得这是我们在写程序的时候值得学习的。
func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()
}
// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
//
// If srv.Addr is blank, ":http" is used.
//
// ListenAndServe always returns a non-nil error. After Shutdown or Close,
// the returned error is ErrServerClosed.
func (srv *Server) ListenAndServe() error {
if srv.shuttingDown() {
return ErrServerClosed
}
addr := srv.Addr
if addr == "" {
addr = ":http"
}
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(ln)
}
注释上写的很清楚,ListenAndServe()
就是用来监听TCP,然后调用Serve来处理这次请求的。
// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
//
// HTTP/2 support is only enabled if the Listener returns *tls.Conn
// connections and they were configured with "h2" in the TLS
// Config.NextProtos.
//
// Serve always returns a non-nil error and closes l.
// After Shutdown or Close, the returned error is ErrServerClosed.
func (srv *Server) Serve(l net.Listener) error {
...
origListener := l
l = &onceCloseListener{Listener: l}
defer l.Close()
...
baseCtx := context.Background()
if srv.BaseContext != nil {
baseCtx = srv.BaseContext(origListener)
if baseCtx == nil {
panic("BaseContext returned a nil context")
}
}
var tempDelay time.Duration // how long to sleep on accept failure
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, err := l.Accept()
if err != nil {
select {
case <-srv.getDoneChan():
return ErrServerClosed
default:
}
if ne, ok := err.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay)
time.Sleep(tempDelay)
continue
}
return err
}
connCtx := ctx
if cc := srv.ConnContext; cc != nil {
connCtx = cc(connCtx, rw)
if connCtx == nil {
panic("ConnContext returned nil")
}
}
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew) // before Serve can return
go c.serve(connCtx)
}
}
Serve()
主要完成接收TCP请求,然后通过go c.serve(connCtx)
处理连接。
进入c.serve()
最重要的是下面这行代码,可以很清楚的看到调用了ServeHTTP
,想想我们一开始编写的Hello World
,其中有一种方法就是编写ServeHTTP
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
serverHandler{c.server}.ServeHTTP(w, w.req)
其实这个ServeHTTP是调用handler.ServeHTTP(rw, req)
// serverHandler delegates to either the server's Handler or
// DefaultServeMux and also handles "OPTIONS *" requests.
type serverHandler struct {
srv *Server
}
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
handler := sh.srv.Handler
if handler == nil {
handler = DefaultServeMux
}
if req.RequestURI == "*" && req.Method == "OPTIONS" {
handler = globalOptionsHandler{}
}
handler.ServeHTTP(rw, req)
}
最后一行的ServeHTTP的实现是下面三种方式的一种。
// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
if r.RequestURI == "*" {
if r.ProtoAtLeast(1, 1) {
w.Header().Set("Connection", "close")
}
w.WriteHeader(StatusBadRequest)
return
}
h, _ := mux.Handler(r)
h.ServeHTTP(w, r)
}
// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
Redirect(w, r, rh.url, rh.code)
}
h, _ := mux.Handler(r)
这个是完成对路径的匹配,返回相应的Handler,下面就是相关函数,调用关系从上到下,最后调用match去确定URL对应的Handler。
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
// CONNECT requests are not canonicalized.
if r.Method == "CONNECT" {
// If r.URL.Path is /tree and its handler is not registered,
// the /tree -> /tree/ redirect applies to CONNECT requests
// but the path canonicalization does not.
if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok {
return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
}
return mux.handler(r.Host, r.URL.Path)
}
// All other requests have any port stripped and path cleaned
// before passing to mux.handler.
host := stripHostPort(r.Host)
path := cleanPath(r.URL.Path)
// If the given path is /tree and its handler is not registered,
// redirect for /tree/.
if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok {
return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
}
if path != r.URL.Path {
_, pattern = mux.handler(host, path)
url := *r.URL
url.Path = path
return RedirectHandler(url.String(), StatusMovedPermanently), pattern
}
return mux.handler(host, r.URL.Path)
}
// handler is the main implementation of Handler.
// The path is known to be in canonical form, except for CONNECT methods.
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
mux.mu.RLock()
defer mux.mu.RUnlock()
// Host-specific pattern takes precedence over generic ones
if mux.hosts {
h, pattern = mux.match(host + path)
}
if h == nil {
h, pattern = mux.match(path)
}
if h == nil {
h, pattern = NotFoundHandler(), ""
}
return
}
// Find a handler on a handler map given a path string.
// Most-specific (longest) pattern wins.
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
// Check for exact match first.
v, ok := mux.m[path]
if ok {
return v.h, v.pattern
}
// Check for longest valid match. mux.es contains all patterns
// that end in / sorted from longest to shortest.
for _, e := range mux.es {
if strings.HasPrefix(path, e.pattern) {
return e.h, e.pattern
}
}
return nil, ""
}
net/http
不仅提供服务端的实现,还提供客户端的实现。
发起请求:
resp, err := http.Get("http://example.com/")
...
resp, err := http.Post("http://example.com/upload", "image/jpeg", &buf)
...
resp, err := http.PostForm("http://example.com/form",
url.Values{"key": {"Value"}, "id": {"123"}})
读响应:
resp, err := http.Get("http://example.com/")
if err != nil {
// handle error
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
// ...
注意这里的resp.Body的读取不能使用Read([]byte)
如果想要详细的设置请求的头部等,可以使用client{}
client := &http.Client{
CheckRedirect: redirectPolicyFunc,
}
resp, err := client.Get("http://example.com")
// ...
req, err := http.NewRequest("GET", "http://example.com", nil)
// ...
req.Header.Add("If-None-Match", `W/"wyzzy"`)
resp, err := client.Do(req)
http.NewRequest(method, url string, body io.Reader)
第三个参数是请求体
下面是几个例子:
func get() {
apiURL := "http://192.168.101.3:8080/hello"
data := url.Values{}
data.Set("name", "abc")
data.Set("age", "18")
u, err := url.ParseRequestURI(apiURL)
u.RawQuery = data.Encode()
resp, err := http.Get(u.String())
if err != nil {
fmt.Println("get failed, err:", err)
return
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println("read from resp.Body failed,err:", err)
return
}
fmt.Print(string(body))
}
func post() {
url := "http://192.168.101.3:8080/post"
// 表单数据
//contentType := "application/x-www-form-urlencoded"
//data := "name=小王子&age=18"
// json
contentType := "application/json"
data := `{"name":"小王子","age":18}`
resp, err := http.Post(url, contentType, strings.NewReader(data))
if err != nil {
fmt.Printf("post failed, err:%v\n", err)
return
}
defer resp.Body.Close()
b, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Printf("get resp failed,err:%v\n", err)
return
}
fmt.Println(string(b))
}