前面两章我们介绍了函数和struct,那你是否想过函数当作struct的字段一样来处理呢?今天我们就讲解一下函数的另一种形态,带有接收者的函数,我们称为method
method
现在假设有这么一个场景,你定义了一个struct叫做长方形,你现在想要计算他的面积,那么按照我们一般的思路应该会用下面的方式来实现
package main import "fmt"type Rectangle struct { width, height float64 }
func area(r Rectangle) float64 { return r.width*r.height }
func main() { r1 := Rectangle{12, 2} r2 := Rectangle{9, 4} fmt.Println("Area of r1 is: ", area(r1)) fmt.Println("Area of r2 is: ", area(r2)) }
这段代码可以计算出来长方形的面积,但是area()不是作为Rectangle的方法实现的(类似面向对象里面的方法),而是将Rectangle的对象(如r1,r2)作为参数传入函数计算面积的。
这样实现当然没有问题咯,但是当需要增加圆形、正方形、五边形甚至其它多边形的时候,你想计算他们的面积的时候怎么办啊?那就只能增加新的函数咯,但是函数名你就必须要跟着换了,变成area_rectangle, area_circle, area_triangle...
像下图所表示的那样, 椭圆代表函数, 而这些函数并不从属于struct(或者以面向对象的术语来说,并不属于class),他们是单独存在于struct外围,而非在概念上属于某个struct的。
图2.8 方法和struct的关系图
很显然,这样的实现并不优雅,并且从概念上来说"面积"是"形状"的一个属性,它是属于这个特定的形状的,就像长方形的长和宽一样。
基于上面的原因所以就有了method的概念,method是附属在一个给定的类型上的,他的语法和函数的声明语法几乎一样,只是在func后面增加了一个receiver(也就是method所依从的主体)。
用上面提到的形状的例子来说,method area() 是依赖于某个形状(比如说Rectangle)来发生作用的。Rectangle.area()的发出者是Rectangle, area()是属于Rectangle的方法,而非一个外围函数。
更具体地说,Rectangle存在字段length 和 width, 同时存在方法area(), 这些字段和方法都属于Rectangle。
用Rob Pike的话来说就是:
"A method is a function with an implicit first argument, called a receiver."
method的语法如下:
func (r ReceiverType) funcName(parameters) (results)
下面我们用最开始的例子用method来实现:
package main import ( "fmt" "math" )type Rectangle struct { width, height float64 }
type Circle struct { radius float64 }
func (r Rectangle) area() float64 { return r.width*r.height }
func (c Circle) area() float64 { return c.radius * c.radius * math.Pi }
func main() { r1 := Rectangle{12, 2} r2 := Rectangle{9, 4} c1 := Circle{10} c2 := Circle{25}
fmt.Println("Area of r1 is: ", r1.area()) fmt.Println("Area of r2 is: ", r2.area()) fmt.Println("Area of c1 is: ", c1.area()) fmt.Println("Area of c2 is: ", c2.area()) }
在使用method的时候重要注意几点
1.虽然method的名字一模一样,但是如果接收者不一样,那么method就不一样
2.method里面可以访问接收者的字段
3.调用method通过.访问,就像struct里面访问字段一样
图示如下:
图2.9 不同struct的method不同
在上例,method area() 分别属于Rectangle和Circle, 于是他们的 Receiver 就变成了Rectangle 和 Circle, 或者说,这个area()方法 是由 Rectangle/Circle 发出的。
值得说明的一点是,图示中method用虚线标出,意思是此处方法的Receiver是以值传递,而非引用传递,是的,Receiver还可以是指针, 两者的差别在于, 指针作为Receiver会对实例对象的内容发生操作,而普通类型作为Receiver仅仅是以副本作为操作对象,并不对原实例对象发生操作。后文对此会有详细论述。
那是不是method只能作用在struct上面呢?当然不是咯,他可以定义在任何你自定义的类型、内置类型、struct等各种类型上面。这里你是不是有点迷糊了,什么叫自定义类型,自定义类型不就是struct嘛,不是这样的哦,struct只是自定义类型里面一种比较特殊的类型而已,还有其他自定义类型申明,可以通过如下这样的申明来实现。
type typeName typeLiteral
请看下面这个申明自定义类型的代码
type ages inttype money float32
type months map[string]int
m := months { "January":31, "February":28, ... "December":31, }
看到了吗?简单的很吧,这样你就可以在自己的代码里面定义有意义的类型了,实际上只是一个定义了一个别名,有点类似于c中的typedef,例如上面ages替代了int
好了,让我们回到method
你可以在任何的自定义类型中定义任意多的method,接下来让我们看一个复杂一点的例子
package main import "fmt"const( WHITE = iota BLACK BLUE RED YELLOW )
type Color byte
type Box struct { width, height, depth float64 color Color }
type BoxList []Box //a slice of boxes
func (b Box) Volume() float64 { return b.width * b.height * b.depth }
func (b *Box) SetColor(c Color) { b.color = c }
func (bl BoxList) BiggestColor() Color { v := 0.00 k := Color(WHITE) for _, b := range bl { if bv := b.Volume(); bv > v { v = bv k = b.color } } return k }
func (bl BoxList) PaintItBlack() { for i, _ := range bl { bl[i].SetColor(BLACK) } }
func (c Color) String() string { strings := []string {"WHITE", "BLACK", "BLUE", "RED", "YELLOW"} return strings[c] }
func main() { boxes := BoxList { Box{4, 4, 4, RED}, Box{10, 10, 1, YELLOW}, Box{1, 1, 20, BLACK}, Box{10, 10, 1, BLUE}, Box{10, 30, 1, WHITE}, Box{20, 20, 20, YELLOW}, }
fmt.Printf("We have %d boxes in our set\n", len(boxes)) fmt.Println("The volume of the first one is", boxes[0].Volume(), "cm³") fmt.Println("The color of the last one is",boxes[len(boxes)-1].color.String()) fmt.Println("The biggest one is", boxes.BiggestColor().String())
fmt.Println("Let's paint them all black") boxes.PaintItBlack() fmt.Println("The color of the second one is", boxes[1].color.String())
fmt.Println("Obviously, now, the biggest one is", boxes.BiggestColor().String()) }
上面的代码通过const定义了一些常量,然后定义了一些自定义类型
1.Color作为byte的别名
2.定义了一个struct:Box,含有三个长宽高字段和一个颜色属性
3.定义了一个slice:BoxList,含有Box
然后以上面的自定义类型为接收者定义了一些method:
1.Volume()定义了接收者为Box,返回Box的容量
2.SetColor(c Color),把Box的颜色改为c
3.BiggestColor()定在在BoxList上面,返回list里面容量最大的颜色
4.PaintItBlack()把BoxList里面所有Box的颜色全部变成黑色
5.String()定义在Color上面,返回Color的具体颜色(字符串格式)
上面的代码通过文字描述出来之后是不是很简单?我们一般解决问题都是通过问题的描述,去写相应的代码实现。
指针作为receiver
现在让我们回过头来看看SetColor这个method,它的receiver是一个指向Box的指针,是的,你可以使用*Box。想想为啥要使用指针而不是Box本身呢?
我们定义SetColor的真正目的是想改变这个Box的颜色,如果不传Box的指针,那么SetColor接受的其实是Box的一个copy,也就是说method内对于颜色值的修改,其实只作用于Box的copy,而不是真正的Box。所以我们需要传入指针。
这里可以把receiver当作method的第一个参数来看,然后结合前面函数讲解的传值和传引用就不难理解
这里你也许会问了那SetColor函数里面应该这样定义*b.Color=c,而不是b.Color=c,因为我们需要读取到指针相应的值。
你是对的,其实Go里面这两种方式都是正确的,当你用指针去访问相应的字段时(虽然指针没有任何的字段),Go知道你要通过指针去获取这个值,看到了吧,Go的设计是不是越来越吸引你了。
也许细心的读者会问这样的问题,PaintItBlack里面调用SetColor的时候是不是应该写成(&bl[i]).SetColor(BLACK),因为SetColor的receiver是*Box,而不是Box。
你又说对的,这两种方式都可以,因为Go知道receiver是指针,他自动帮你转了。
也就是说:
如果一个method的receiver是*T,你可以在一个T类型的实例变量V上面调用这个method,而不需要&V去调用这个method
类似的
如果一个method的receiver是T,你可以在一个*T类型的变量P上面调用这个method,而不需要 *P去调用这个method
所以,你不用担心你是调用的指针的method还是不是指针的method,Go知道你要做的一切,这对于有多年C/C++编程经验的同学来说,真是解决了一个很大的痛苦。
method继承
前面一章我们学习了字段的继承,那么你也会发现Go的一个神奇之处,method也是可以继承的。如果匿名字段实现了一个method,那么包含这个匿名字段的struct也能调用该method。让我们来看下面这个例子:
package main import "fmt"type Human struct { name string age int phone string }
type Student struct { Human //匿名字段 school string }
type Employee struct { Human //匿名字段 company string }
//在human上面定义了一个method func (h *Human) SayHi() { fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone) }
func main() { mark := Student{Human{"Mark", 25, "222-222-YYYY"}, "MIT"} sam := Employee{Human{"Sam", 45, "111-888-XXXX"}, "Golang Inc"}
mark.SayHi() sam.SayHi() }
method重写
上面的例子中,如果Employee想要实现自己的SayHi,怎么办?简单,和匿名字段冲突一样的道理,我们可以在Employee上面定义一个method,重写了匿名字段的方法。请看下面的例子
package main import "fmt"type Human struct { name string age int phone string }
type Student struct { Human //匿名字段 school string }
type Employee struct { Human //匿名字段 company string }
//Human定义method func (h *Human) SayHi() { fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone) }
//Employee的method重写Human的method func (e *Employee) SayHi() { fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name, e.company, e.phone) //Yes you can split into 2 lines here. }
func main() { mark := Student{Human{"Mark", 25, "222-222-YYYY"}, "MIT"} sam := Employee{Human{"Sam", 45, "111-888-XXXX"}, "Golang Inc"}
mark.SayHi() sam.SayHi() }
通过这些内容,我们可以设计出基本的面向对象的程序了,但是Go里面的面向对象是如此的简单,没有任何的私有、公有关键字,通过大小写来实现(大写开头的为公有,小写开头的为私有),方法也同样适用这个原则。
本文向大家介绍Go语言interface详解,包括了Go语言interface详解的使用技巧和注意事项,需要的朋友参考一下 interface Go语言里面设计最精妙的应该算interface,它让面向对象,内容组织实现非常的方便,当你看完这一章,你就会被interface的巧妙设计所折服。 什么是interface 简单的说,interface是一组method的组合,我们通过interface
本文向大家介绍详解go语言的并发,包括了详解go语言的并发的使用技巧和注意事项,需要的朋友参考一下 1、启动go语言的协程 2、runtime.Goexit()方法。立即终止当前的协程 3、runtime.GOMAXPROCS()表示go使用几个cpu执行代码 4、管道定义和创建管道 5、管道的缓冲 6、关闭管道和接受关闭管道的信号 7、只读管道和只写管道和生产者和消费者模型 8、Timer定时器
本文向大家介绍Go语言并发技术详解,包括了Go语言并发技术详解的使用技巧和注意事项,需要的朋友参考一下 有人把Go比作21世纪的C语言,第一是因为Go语言设计简单,第二,21世纪最重要的就是并行程序设计,而Go从语言层面就支持了并行。 goroutine goroutine是Go并行设计的核心。goroutine说到底其实就是线程,但是它比线程更小,十几个goroutine可能体现在底层就是五六个
本文向大家介绍详解Go语言中for range的"坑",包括了详解Go语言中for range的"坑"的使用技巧和注意事项,需要的朋友参考一下 前言 Go 中的for range组合可以和方便的实现对一个数组或切片进行遍历,但是在某些情况下使用for range时很可能就会被"坑",下面用一段代码来模拟下: 代码解析: 创建一个int slice,变量名为arr1并初始化 1,2,3 作为切片的值
主要内容:目录结构,源文件一般的编程语言往往对工程(项目)的目录结构是没有什么规定的,但是Go语言却在这方面做了相关规定,本节我们就来聊聊Go语言在工程结构方面的有关知识。 我们前面讲搭建Go语言开发环境时提到的环境变量 GOPATH,项目的构建主要是靠它来实现的。这么说吧,如果想要构建一个项目,就需要将这个项目的目录添加到 GOPATH 中,多个项目之间可以使用 分隔。 如果不配置 GOPATH,即使处于同一目录,代码之
包(package)是多个 Go 源码的集合,是一种高级的代码复用方案,像 fmt、os、io 等这样具有常用功能的内置包在 Go语言中有 150 个以上,它们被称为标准库,大部分(一些底层的除外)内置于 Go 本身。 包要求在同一个目录下的所有文件的第一行添加如下代码,以标记该文件归属的包: package 包名 包的特性如下: 一个目录下的同级文件归属一个包。 包名可以与其目录不同名。 包名为