TensorFlow包含一个可视化工具 - TensorBoard。它用于分析数据流图,也用于理解机器学习模型。TensorBoard的重要功能包括有关垂直对齐中任何图形的参数和详细信息的不同类型统计信息的视图。 深度神经网络包括有36,000个节点。TensorBoard有助于在高级块中折叠这些节点并突出显示相同的结构。这允许更好地分析关注计算图的主要部分的图。TensorBoard可视化非常具
TensorFlow 图表计算强大而又复杂,图表可视化在理解和调试时显得非常有帮助。 下面是一个运作时的可式化例子。 "一个TensorFlow图表的可视化") 一个TensorFlow图表的可视化。 为了显示自己的图表,需将 TensorBoard 指向此工作的日志目录并运行,点击图表顶部窗格的标签页,然后在左上角的菜单中选择合适的运行。想要深入学习关于如何运行 TensorBoard 以及如何
TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。 为了更方便 TensorFlow 程序的理解、调试与优化,我们发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。 当 TensorBoard 设置完成后,它应该是这样子的: 数据序列
本文向大家介绍Tensorflow的可视化工具Tensorboard的初步使用详解,包括了Tensorflow的可视化工具Tensorboard的初步使用详解的使用技巧和注意事项,需要的朋友参考一下 当使用Tensorflow训练大量深层的神经网络时,我们希望去跟踪神经网络的整个训练过程中的信息,比如迭代的过程中每一层参数是如何变化与分布的,比如每次循环参数更新后模型在测试集与训练集上的准确率是如
本文向大家介绍使用tensorboard可视化loss和acc的实例,包括了使用tensorboard可视化loss和acc的实例的使用技巧和注意事项,需要的朋友参考一下 1.用try...except...避免因版本不同出现导入错误问题 2.将代码写入作用域(作用域不影响代码的运行) 3.将要保存的变量存在一起 另外可使用 tf.merge_all_summaries() 或者 tf.summa
本节将介绍一些对于VR开发很有帮助的工具: A-Frame查看器(Inspector) - 这是一个所见即所得的检查工具以获得场景的不同视图并看到实体调整后的视觉效果,和浏览器的DOM检查器类似。可以在任意的A-Frame场景中用<ctrl> + <alt> + i组合键打开。 运动捕捉(Motion Capture) - 这是一个记录和回放头戴设备和控制器的姿势和事件的工具。点击记录,在VR头戴