当前位置: 首页 > 工具软件 > joone > 使用案例 >

Joone示例

茅涵映
2023-12-01
package com.pintn.joone;

import org.joone.engine.FullSynapse;
import org.joone.engine.LinearLayer;
import org.joone.engine.Monitor;
import org.joone.engine.NeuralNetEvent;
import org.joone.engine.NeuralNetListener;
import org.joone.engine.SigmoidLayer;
import org.joone.engine.learning.TeachingSynapse;
import org.joone.io.MemoryInputSynapse;
import org.joone.io.MemoryOutputSynapse;
import org.joone.net.NeuralNet;

public class JooneTest_01 implements NeuralNetListener {

private NeuralNet nnet = null;
private MemoryInputSynapse inputSynapse, desiredOutputSynapse;
private MemoryOutputSynapse outputSynapse;
LinearLayer input;
SigmoidLayer hidden, output;
boolean singleThreadMode = true;

// XOR input
private double[][] inputArray = new double[][] {
{ 0.0, 0.0 },
{ 0.0, 1.0 },
{ 1.0, 0.0 },
{ 1.0, 1.0 } };

// XOR desired output
private double[][] desiredOutputArray = new double[][] {
{ 0.0 },
{ 1.0 },
{ 1.0 },
{ 0.0 } };

/**
* @param args
* the command line arguments
*/
public static void main(String args[]) {
JooneTest_01 xor = new JooneTest_01();

xor.initNeuralNet();
xor.train();
xor.interrogate();
}

/**
* Method declaration
*/
public void train() {

// set the inputs
inputSynapse.setInputArray(inputArray);
inputSynapse.setAdvancedColumnSelector(" 1,2 ");
// set the desired outputs
desiredOutputSynapse.setInputArray(desiredOutputArray);
desiredOutputSynapse.setAdvancedColumnSelector(" 1 ");

// get the monitor object to train or feed forward
Monitor monitor = nnet.getMonitor();

// set the monitor parameters
monitor.setLearningRate(0.8);
monitor.setMomentum(0.3);
monitor.setTrainingPatterns(inputArray.length);
monitor.setTotCicles(5000);
monitor.setLearning(true);

long initms = System.currentTimeMillis();
// Run the network in single-thread, synchronized mode
nnet.getMonitor().setSingleThreadMode(singleThreadMode);
nnet.go(true);
System.out.println(" Total time= "
+ (System.currentTimeMillis() - initms) + " ms ");
}

private void interrogate() {
// set the inputs
inputSynapse.setInputArray(inputArray);
inputSynapse.setAdvancedColumnSelector(" 1,2 ");
Monitor monitor = nnet.getMonitor();
monitor.setTrainingPatterns(4);
monitor.setTotCicles(1);
monitor.setLearning(false);
MemoryOutputSynapse memOut = new MemoryOutputSynapse();
// set the output synapse to write the output of the net

if (nnet != null) {
nnet.addOutputSynapse(memOut);
System.out.println(nnet.check());
nnet.getMonitor().setSingleThreadMode(singleThreadMode);
nnet.go();

for (int i = 0; i < 4; i++) {
double[] pattern = memOut.getNextPattern();
System.out.println(" Output pattern # " + (i + 1) + " = "
+ pattern[0]);
}
System.out.println(" Interrogating Finished ");
}
}

/**
* Method declaration
*/
protected void initNeuralNet() {

// First create the three layers
input = new LinearLayer();
hidden = new SigmoidLayer();
output = new SigmoidLayer();

// set the dimensions of the layers
input.setRows(2);
hidden.setRows(3);
output.setRows(1);

input.setLayerName(" L.input ");
hidden.setLayerName(" L.hidden ");
output.setLayerName(" L.output ");

// Now create the two Synapses
FullSynapse synapse_IH = new FullSynapse(); /* input -> hidden conn. */
FullSynapse synapse_HO = new FullSynapse(); /* hidden -> output conn. */

// Connect the input layer whit the hidden layer
input.addOutputSynapse(synapse_IH);
hidden.addInputSynapse(synapse_IH);

// Connect the hidden layer whit the output layer
hidden.addOutputSynapse(synapse_HO);
output.addInputSynapse(synapse_HO);

// the input to the neural net
inputSynapse = new MemoryInputSynapse();

input.addInputSynapse(inputSynapse);

// The Trainer and its desired output
desiredOutputSynapse = new MemoryInputSynapse();

TeachingSynapse trainer = new TeachingSynapse();

trainer.setDesired(desiredOutputSynapse);

// Now we add this structure to a NeuralNet object
nnet = new NeuralNet();

nnet.addLayer(input, NeuralNet.INPUT_LAYER);
nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER);
nnet.addLayer(output, NeuralNet.OUTPUT_LAYER);
nnet.setTeacher(trainer);
output.addOutputSynapse(trainer);
nnet.addNeuralNetListener(this);
}

public void cicleTerminated(NeuralNetEvent e) {
}

public void errorChanged(NeuralNetEvent e) {
Monitor mon = (Monitor) e.getSource();
if (mon.getCurrentCicle() % 100 == 0)
System.out.println(" Epoch: "
+ (mon.getTotCicles() - mon.getCurrentCicle()) + " RMSE: "
+ mon.getGlobalError());
}

public void netStarted(NeuralNetEvent e) {
Monitor mon = (Monitor) e.getSource();
System.out.print(" Network started for ");
if (mon.isLearning())
System.out.println(" training. ");
else
System.out.println(" interrogation. ");
}

public void netStopped(NeuralNetEvent e) {
Monitor mon = (Monitor) e.getSource();
System.out.println(" Network stopped. Last RMSE= "
+ mon.getGlobalError());
}

public void netStoppedError(NeuralNetEvent e, String error) {
System.out.println(" Network stopped due the following error: "
+ error);
}

}
 类似资料: