当前位置: 首页 > 工具软件 > RuisiBI-OLAP > 使用案例 >

BI ETL OLAP

通迪
2023-12-01

BI 
确切地讲,BI并不是一项新技术,它将数据仓库(DW)、联机分析处理(OLAP)、数据挖掘(DM)等技术与客户关系管理(CRM)等结合起来应用于商业活动实际过程当中,实现了技术服务于决策的目的;Mark Hammond从管理的角度看待BI,认为BI是从“根本上帮助你把公司的运营数据转化成为高价值的可以获取的信息(或者知识),并且在恰当的时间通过恰当的手段把恰当的信息传递给恰当的人”。 

 

ETL 
ETL即数据抽取(Extract)、转换(Transform)、装载(Load)的过程。它是构建数据仓库的重要环节。数据仓库是面向主题的、集成的、稳定的且随时间不断变化的数据集合,用以支持经营管理中的决策制定过程。数据仓库系统中有可能存在着大量的噪声数据,引起的主要原因有:滥用缩写词、惯用语、数据输入错误、重复记录、丢失值、拼写变化等。即便是一个设计和规划良好的数据库系统,如果其中存在着大量的噪声数据,那么这个系统也是没有任何意义的,因为“垃圾进,垃圾出”(garbage in, garbage out),系统根本就不可能为决策分析系统提供任何支持。为了清除噪声数据,必须在数据库系统中进行数据清洗。目前有不少数据清洗研究和ETL研究,但是如何在ETL过程中进行有效的数据清洗并使这个过程可视化,此方面研究不多。本文主要从两个方面阐述ETL和数据清洗的实现过程:ETL的处理方式[19]和数据清洗的实现方法。 

ETL,是英文Extract-Transform-Load的缩写,即填充、更新数据仓库的数据抽取、转换、装载的过程。这是实现商业智能之前的数据采集步骤。这一步骤完成之后,对库中数据的数据挖掘、分析处理才可以进行。

 

对于ETL而言,“是什么”是很容易理解的,也就是将分散的、不易利用的数据进行整理,变成规则清晰的、易于利用的、(可能同时还是)集中的数据。在ETL过程之外,就可以基于报表分析系统、多维分析系统和数据挖掘系统等,进行进一步的数据分析利用。

这一过程可以通过Hard Codding,即编写程序实现,也可以通过各种ETL工具实现。

联机事务处理OLTP 
联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd于1993年提出的,他同时提出了关于OLAP的12条准则。OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理 (OLTP) 明显区分开来。 

当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP(On-Line Analytical Processing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。 
OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。OLAP的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,它的技术核心是"维"这个概念。

@  BI 就是智能决策分析工具。Power-BI 就是一个典型的例子。
@  TL分别是Extract(数据抽取)、 Transform(转换)、 Loading(装载)三个英文单词的首字母缩写。
@  线上分析处理(On-Line Analytical Processing,简称OLAP),是一套以多维度方式分析资料,而能弹性地提供积存(Roll-up)、下钻(Drill-down)、和枢纽分析(pivot)等操作,呈现整合性决策资讯的方法,多用于决策支持系统、商务智能或数据仓库。其主要的功能,在于方便大规模数据分析及统计计算,对决策提供参考和支持。与之相区别的是线上交易处理(OLTP)。

OLAP技术联机分析处理(OLAP)的概念最早是由关系数据库之父E.F.Codd于1993年提出的。当时,Codd认为联机事务处理(OLTP)已不能满足终端用户对数据库查询分析的需要,SQL对大数据库进行的简单查询也不能满足用户分析的需求。用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求。因此Codd提出了多维数据库和多维分析的概念,即OLAP。
Codd提出OLAP的12条准则来描述OLAP系统。基于Codd的12条准则,各个软件开发厂家见仁见智,其中一个流派,认为可以沿用关系型数据库来存储多维数据,于是,基于稀疏矩阵表示方法的星型结构(star schema)就出现了。
后来又演化出雪花结构。为了与多维数据库相区别,则把基于关系型数据库的OLAP称为Relational OLAP,简称ROLAP。代表产品有Informix Metacube、Microsoft SQL Server OLAP Services。
Arbor Software严格遵照Codd的定义,自行建立了多维数据库,来存放联机分析系统数据,开创了多维数据存储的先河,后来的很多家公司纷纷采用多维数据存储。被人们称为Muiltdimension OLAP,简称MOLAP,代表产品有Hyperion(原Arbor Software) Essbase、Showcase Strategy等。
相对于Server OLAP而言。部分分析工具厂家建议把部分数据下载到本地,为用户提供本地的多维分析。代表产品有Brio Designer,Business Object。这样也形成了另一种OLAP俗称Client OLAP。
纵观整个OLAP以及BI的发展历史,从OLTP统计功能à特定模型查询开发àROLAPàMOLAP和Client OLAP,这样一个产品的不断创新发展过程中,使OLAP技术不断成熟和得到市场的认可,也为BI应用提供了很好的技术保障,使得与传统的OLTP系统在市场中平分秋色。                                                                              12条准则来描述。
准则1 OLAP模型必须提供多维概念视图
准则2 透明性准则
准则3 存取能力推测
准则4 稳定的报表能力
准则5 客户/服务器体系结构
准则6 维的等同性准则
准则7 动态的稀疏矩阵处理准则
准则8 多用户支持能力准则
准则9 非受限的跨维操作
准则10 直观的数据操纵
准则11 灵活的报表生成
准则12 不受限的维与聚集层次

更多详细内容请见:http://www.stor-age.com/software_zone/2007/1004/535453.shtml

商务智能:http://www.chinabi.net/Index.html

 类似资料:

相关阅读

相关文章

相关问答