JVM调优情况十分复杂,各种情况都可能导致垃圾回收不能够达到预想的效果。对于场景问题,可以从如下几个大方向进行设计:
大访问压力下,MGC 频繁一些是正常的,只要MGC 延迟不导致停顿时间过长或者引发FGC ,那可以适当的增大Eden 空间大小,降低频繁程度,同时要保证,空间增大对垃圾回收产生的停顿时间增长是可以接受的。
如果MinorGC 频繁,且容易引发 Full GC。需要从如下几个角度进行分析。
a:每次MGC存活的对象的大小,是否能够全部移动到 S1区,如果S1 区大小 < MGC 存活的对象大小,这批对象会直接进入老年代。注意 了,这批对象的年龄才1岁,很有可能再多等1次MGC 就能被回收了,可是却进入了老年代,只能等到Full GC 进行回收,很可怕。这种情况下,应该在系统压测的情况下,实时监控MGC存活的对象大小,并合理调整eden和s 区的大小以及比例。
b:还有一种情况会导致对象在未达到15岁之前,直接进入老年代,就是S1区的对象,相同年龄的对象所占总空间大小>s1区空间大小的一半,所以为了应对这种情况,对于S区的大小的调整就要考虑:尽量保证峰值状态下,S1区的对象所占空间能够在MGC的过程中,相同对象年龄所占空间不大于S1区空间的一半, 因此对于S1空间大小的调整,也是十分重要的。
由于大对象创建频繁,导致Full GC 频繁。对于大对象,JVM专门有参数进行控制,-XX: PretenureSizeThreshold。超过这个参数值的对象,会直接进入老年代,只能等到full GC 进行回收,所以在系统压测过程中,要重点监测大对象的产生。如果能够优化对象大小,则进行代码层面的优化,优化如:根据业务需求看是否可以将该大对象设置为单例模式下的对象,或者该大对象是否可以进行拆分使用,或者如果大对象确定使用完成后,将该对象赋值为null,方便垃圾回收。
如果代码层面无法优化,则需要考虑:
a:调高-XX: PretenureSizeThreshold参数的大小,使对象有机会在eden区创建,有机会经历MGC以被回收。但是这个参数的调整要结合MGC过程中Eden区的大小是否能够承载,包括S1区的大小承载问题。
b:这是最不希望发生的情况, 如果必须要进入老年代,也要尽量保证,该对象确实是长时间使用的对象,放入老年代的总对象创建量不会造成老年代的内存空间迅速长满发生Full GC,在这种情况下,可以通过定时脚本,在业务系统不繁忙情况下,主动触发full gc。
MGC 与 FGC 停顿时间长导致影响用户体验。其实对于停顿时间长的问题无非就两种情况:
a:gc 真实回收过程时间长,即real time时间长。这种时间长大部分是因为内存过大导致,从标记到清理的过程中需要对很大的空间进行操作,导致停顿时间长。这种情况,要考虑减少堆内存大 小,包括新生代和老年代,比如之前使用16G的堆内存,可以考虑将16G 内存拆分为4个4G的内存区域,可以单台机器部署JVM逻辑集群,也可以为了降低GC回收时间,进行4节点的分布式部署,这里的分布式部署是为了降低 GC垃圾回收时间。
b:gc真实回收时间 real time 并不长,但是user time(用户态执行时间) 和 sys time(核心态执行时间)时间长,导致从客户角度来看,停顿时间过长。这种情况,要考虑线程是否及时达到了安全点,通过-XX:+PrintSafepointStatistics
和-XX: PrintSafepointStatisticsCount=1
去查看安全点日志,如果有长时间未达到安全点的线程,再通过参数-XX: +SafepointTimeout
和-XX:SafepointTimeoutDelay=2000
两个参数来找到大于2000ms到达安全点的线程,这里 的2000ms可以根据情况自己设置,然后对代码进行针对的调整。除了安全点问题,也有可能是操作系统本身负载比较高,导致处理速度过慢,线程达到安全点时间长,因此需要同时检测操作系统自身的运行情况。
内存泄漏导致的MGC和FGC频繁,最终引发oom。纯代码级别导致的MGC和FGC频繁。如果是这种情况,那就只能对代码进行大范围的调整,这种情况就非常多了,而且会很糟糕。如大循环体中的new 对象,未使用合理容器进行对象托管导致对象创建频繁,不合理的数据结构使用等等。 总之,JVM的调优无非就一个目的,在系统可接受的情况下达到一个合理的MGC和FGC的频率以及可接受的回收时间