GitHub - chatopera/Synonyms: 中文近义词:聊天机器人,智能问答工具包
Chinese Synonyms for Natural Language Processing and Understanding.
更好的中文近义词:聊天机器人、智能问答工具包。
synonyms
可以用于自然语言理解的很多任务:文本对齐,推荐算法,相似度计算,语义偏移,关键字提取,概念提取,自动摘要,搜索引擎等。
pip install -U synonyms python -c "import synonyms" # download word vectors file
兼容 py2 和 py3,当前稳定版本 v3.x。
提示:安装后初次使用会下载词向量文件,下载速度取决于网络情况。
#118 词向量文件一直下载不下来?可尝试按下述方法设置国内的词向量备份地址:
export SYNONYMS_WORD2VEC_BIN_URL_ZH_CN=https://gitee.com/chatopera/cskefu/attach_files/610602/download/words.vector.gz pip install -U synonyms python -c "import synonyms" # download word vectors file
其它环境变量介绍见下文,Windows cmd 使用 set SYNONYMS_WORD2VEC_BIN_URL_ZH_CN 设置环境变量。
本文档的配置和接口说明面向 python 工具包。
支持使用环境变量配置分词词表和 word2vec 词向量文件。
环境变量 | 描述 |
---|---|
SYNONYMS_WORD2VEC_BIN_MODEL_ZH_CN | 使用 word2vec 训练的词向量文件,二进制格式。 |
SYNONYMS_WORDSEG_DICT | 中文分词主字典,格式和使用参考 |
import synonyms print("人脸: ", synonyms.nearby("人脸")) print("识别: ", synonyms.nearby("识别")) print("NOT_EXIST: ", synonyms.nearby("NOT_EXIST"))
synonyms.nearby(WORD [,SIZE])
返回一个元组,元组中包含两项:([nearby_words], [nearby_words_score])
,nearby_words
是 WORD 的近义词们,也以 list 的方式存储,并且按照距离的长度由近及远排列,nearby_words_score
是nearby_words
中对应位置的词的距离的分数,分数在(0-1)区间内,越接近于 1,代表越相近;SIZE
是返回词汇数量,默认 10。比如:
synonyms.nearby(人脸, 10) = ( ["图片", "图像", "通过观察", "数字图像", "几何图形", "脸部", "图象", "放大镜", "面孔", "Mii"], [0.597284, 0.580373, 0.568486, 0.535674, 0.531835, 0.530 095, 0.525344, 0.524009, 0.523101, 0.516046])
在 OOV 的情况下,返回 ([], [])
,目前的字典大小: 435,729。
两个句子的相似度比较
sen1 = "发生历史性变革" sen2 = "发生历史性变革" r = synonyms.compare(sen1, sen2, seg=True)
其中,参数 seg 表示 synonyms.compare 是否对 sen1 和 sen2 进行分词,默认为 True。返回值:[0-1],并且越接近于 1 代表两个句子越相似。
旗帜引领方向 vs 道路决定命运: 0.429 旗帜引领方向 vs 旗帜指引道路: 0.93 发生历史性变革 vs 发生历史性变革: 1.0
以友好的方式打印近义词,方便调试,display(WORD [, SIZE])
调用了 synonyms#nearby
方法。
>>> synonyms.display("飞机") '飞机'近义词: 1. 飞机:1.0 2. 直升机:0.8423391 3. 客机:0.8393003 4. 滑翔机:0.7872388 5. 军用飞机:0.7832081 6. 水上飞机:0.77857226 7. 运输机:0.7724742 8. 航机:0.7664748 9. 航空器:0.76592904 10. 民航机:0.74209654
SIZE
是打印词汇表的数量,默认 10。
获得一个词语的向量,该向量为 numpy 的 array,当该词语是未登录词时,抛出 KeyError 异常。
>>> synonyms.v("飞机") array([-2.412167 , 2.2628384 , -7.0214124 , 3.9381874 , 0.8219283 , -3.2809453 , 3.8747153 , -5.217062 , -2.2786229 , -1.2572327 ], dtype=float32)
获得一个分词后句子的向量,向量以 BoW 方式组成
sentence: 句子是分词后通过空格联合起来 ignore: 是否忽略OOV,False时,随机生成一个向量
中文分词
synonyms.seg("中文近义词工具包")
分词结果,由两个 list 组成的元组,分别是单词和对应的词性。
(['中文', '近义词', '工具包'], ['nz', 'n', 'n'])
该分词不去停用词和标点。
提取关键词,默认按照重要程度提取关键词。
keywords = synonyms.keywords("9月15日以来,台积电、高通、三星等华为的重要合作伙伴,只要没有美国的相关许可证,都无法供应芯片给华为,而中芯国际等国产芯片企业,也因采用美国技术,而无法供货给华为。目前华为部分型号的手机产品出现货少的现象,若该形势持续下去,华为手机业务将遭受重创。")