当前位置: 首页 > 工具软件 > IndexR > 使用案例 >

reset_index和set_index使用

楚宇
2023-12-01

1.set_index

DataFrame可以通过set_index方法,可以设置单索引和复合索引。 
DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 
append添加新索引,drop为False,inplace为True时,索引将会还原为列

import numpy as np
import pandas as pd
from pandas import DataFrame
 
a_data=pd.DataFrame({"a_char":list("abcd"),
        "number":[1,1,2,2],
        "subject":["maths","science","chem","history"],
        "score":[100,90,80,90]})
a_data.index=["A","B","C","D"]
print(a_data)
"""
  a_char  number  subject  score
A      a       1    maths    100
B      b       1  science     90
C      c       2     chem     80
D      d       2  history     90
"""
a_data1=a_data.set_index("subject")
print(a_data1)
"""
        a_char  number  score
subject                      
maths        a       1    100
science      b       1     90
chem         c       2     80
history      d       2     90
"""
a_data2=a_data.set_index(["number","subject"])
print(a_data2)
"""               a_char  score
number subject              
1      maths        a    100
       science      b     90
2      chem         c     80
       history      d     90
"""

2.reset_index

reset_index可以还原索引,重新变为默认的整型索引 
DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=”) 
level控制了具体要还原的那个等级的索引 
drop为False则索引列会被还原为普通列,否则会丢失

a_data3=a_data2.reset_index()
print(a_data3)
"""
   number  subject a_char  score
0       1    maths      a    100
1       1  science      b     90
2       2     chem      c     80
3       2  history      d     90
"""

参考:https://blog.csdn.net/jingyi130705008/article/details/78162758/

以上,记录本人学习过程

 类似资料: