一 OGRE支持的四种动画
Ogre默认支持四种形式的动画:1.骨骼动画 2.节点动画 3.顶点动画 4.数值动画
其中骨骼动画也是节点动画,因为bone继承于node
1.骨骼动画 :
骨骼动画的基础:在ogre中骨骼动画主要涉及两个类,mesh和skeleton,skeleton由许多Bone组成,这些bone之间有层级关系,skeleton就是一个骨架关系,某个mesh可以被绑定在这个skeleton上,绑定的实质就是某个vertex受某些bone的影响,也就是某个bone运动,就会导致和他有关系的那些vertex运动。所以对照本页最上面的图,他最末端控制的店就是skeleton中的每个bone,一个skeleton中可以蕴含多套animation。
一般情况下骨骼动画都是在maya或3Dmax之类的工具里面制作好的,然后通过导出方式,导出到一个mesh文件和一个skeleton文件。ogre在加载模型的时候已经把这些动画加载好,需要直接使用就行了。
AnimationState* as=entity->getAnimationState("动画名字");
动态创作骨骼动画:在另外一些情况下,我们只是在skeleton文件中设置网格顶点与骨骼的绑定关系,而不描述骨骼的运动轨迹。运动轨迹会动态的根据实际情况生成,这对于物理碰撞检测后的动画效果是很常见的。
//1.把skeleton和mesh文件内容加载到entity,此时绑定了骨骼与顶点但是没有实现动画效果...
//获取entity中的相应骨骼
SkeletonInstance* ske=entiy->getSkeleton();
//为骨骼添加一个动画
Animation* anim=ske->createAnimation("My",1);
//为每一块骨头创建track(动作集)
Bone* b0=ske->getRootBone();
NodeAnimationTrack* t0=anim->createNodeTrack(0,b0);//例如这是为root bone创建
//为每个bone的track创建关键帧...
//更新这个新加入的动画
entity->refreshAvailableAnimationState();
2.场景节点动画:
是指让场景中的某些结点运动,如创建camera的动画等。
// 创建Animation
Animation* anim=smgr->createAnimation();
// 设置插值方式:线性的和样条线(样条线的更加平滑)
anim->setInterpolationMode(Animation::IM_SPLINE);
//为需要动画的节点创建一个Track,节点动画是以节点为单位
NodeAnimationTrack* t0=anim->createNodeTrack(0,node);
//对于每个track创建它的每个关键帧
TransformKeyFrame* k_t0_0=t0->createNodeKeyFrame(0);//设置该帧的时间点
k_t0_0->setTranslate(Ogre::Vector3(0,0,0));//设置该帧处这个结点的位置和其他几何状态
TransformKeyFrame* k_t0_1=t0->createNodeKeyFrame(1);
k_t0_1->setTranslate(Ogre::Vector3(100,0,0));
//创建一个AnimationState用于控制动画
AnimationState* as=smgr->createAnimationState(该动画名字);
as->setEnabled(true); //必须设置为true才能被播放
as->setTimePosition();//在帧监听中通过调用这个函数来播放动画
3.顶点动画:
顶点动画大多情况下利用gpu shader来实现以提高效率,所以较少直接使用ogre的动画机制。
4.数值动画:我的理解是跟传统的一副一副图片组成的动画类似,这种方式效率低下,游戏肯定是不会用到的。
二 详解Animation AnimationTrack AnimationStates AnimationStateSet KeyFrame
在说API之前先了解一下动画的原理:以一个人行走为例,要想使人能够行走,必须在这个人模型上设置一些特真点,然后让这些点在每一帧按照一定的规则进行动,从而改变整个模型的状态。
在ogre里面,Keyframe类描述的是一个特征点(一个结点、一根骨头、一个顶点)的某一个关键帧的状态(位置、缩放、朝向等)和对应的时间点。
一个可驱动点的所有keyframe组合成一个track,每个可驱动点都有一个他的track,这就好比某个点在整段动画中的轨迹,其中keyframe要由track来创建。
多个track组合在一起就成为了一段动画,用Animation类来表示,这就是一个动画,例如对于骨骼动画,他的每一个骨头都有一个track,那么所有的骨头的track的组合在一起也就是整个骨骼动画了。track由Animation来创建。Animation则可以通过skeleton或者scenenmanager等来创建。
AnimationSate类:通常我们操控一段动画的播放等都不是直接操纵animation
类,而是通过一个类AnimationState,它是animation的一个实例,通过场景管理器创建某个animation的一个animationState,然后就可以利用这个animationstate来播放这个animation了。
AnimationState :这个来描述了一些动画的状态,用于控制动画的播放。
BoneBlendMask* mBlendMask; // ???
String mAnimationName; //Animation名字
AnimationStateSet* mParent; // AnimationState 的管理类
Real mTimePos; // 时间点
Real mLength; // 时间长度
Real mWeight; // 骨骼的权重
bool mEnabled; // 是否播放
bool mLoop; // 是否循环播放
AnimationState只是控制动画的状态,其并不具备播放功能。另外,AnimationStateSet作为一个容器,不仅存储着AnimationState 而且维护着AnimationState 的状态变更,一旦AnimationState 的某个属性值被改变,AnimationStateSet维护的状态就会变脏。
Animation :
1.插值模式:
enum InterpolationMode{ // 插值状态
IM_LINEAR, // 线性插值
IM_SPLINE // 样条插值(较好)
};
enum RotationInterpolationMode{ //现状插值状态
RIM_LINEAR, // 线性插值
RIM_SPHERICAL // 样条插值
};
2.三种track:
ogre实现了四种动画(1.骨骼动画 2.场景节点动画 3.顶点动画 4.数值动画),在Animation类里面管理了三种track(NumericAnimationTrack,NodeAnimationTrack,VertexAnimationTrack)他们继承于AnimationTrack。
NodeTrackList mNodeTrackList; // 一个<unsigned short,NodeAnimationTrack*>map
NumericTrackList mNumericTrackList; // 一个<unsigned short,NumericAnimationTrack*>
VertexTrackList mVertexTrackList; // 一个<unsigned short,VertexAnimationTrack*>
3.播放动画:
//播放所有动画
void Animation::apply(Real timePos, Real weight, Real scale)
{
_applyBaseKeyFrame();
// Calculate time index for fast keyframe search
TimeIndex timeIndex = _getTimeIndex(timePos);
NodeTrackList::iterator i;
for (i = mNodeTrackList.begin(); i != mNodeTrackList.end(); ++i)
{
i->second->apply(timeIndex, weight, scale);
}
NumericTrackList::iterator j;
for (j = mNumericTrackList.begin(); j != mNumericTrackList.end(); ++j)
{
j->second->apply(timeIndex, weight, scale);
}
VertexTrackList::iterator k;
for (k = mVertexTrackList.begin(); k != mVertexTrackList.end(); ++k)
{
k->second->apply(timeIndex, weight, scale);
}
}
//播放当前Skeleton的动画
void Animation::apply(Skeleton* skel, Real timePos, float weight,
const AnimationState::BoneBlendMask* blendMask, Real scale)
{
_applyBaseKeyFrame();
// Calculate time index for fast keyframe search
TimeIndex timeIndex = _getTimeIndex(timePos);
NodeTrackList::iterator i;
for (i = mNodeTrackList.begin(); i != mNodeTrackList.end(); ++i)
{
// get bone to apply to
Bone* b = skel->getBone(i->first);
i->second->applyToNode(b, timeIndex, (*blendMask)[b->getHandle()] * weight, scale);
}
}
AnimationTrack :动画轨迹
KeyFrameList mKeyFrames;
KeyFrameIndexMap mKeyFrameIndexMap;
AnimationTrack 除了管理KeyFrame以外,还有几个有用的方法,只不过现在不了解,就先不贴出来分析了。
1.NumericAnimationTrack:
void NumericAnimationTrack::applyToAnimable(const AnimableValuePtr& anim, const TimeIndex& timeIndex,
Real weight, Real scale)
{
// Nothing to do if no keyframes or zero weight, scale
if (mKeyFrames.empty() || !weight || !scale)
return;
NumericKeyFrame kf(0, timeIndex.getTimePos());
getInterpolatedKeyFrame(timeIndex, &kf);
// add to existing. Weights are not relative, but treated as
// absolute multipliers for the animation
AnyNumeric val = kf.getValue() * (weight * scale);
anim->applyDeltaValue(val);
}
最终动画是由AnimableValue对象播放的。但是,我看了一下AnimableValue的applyDeltaValue方法,都没有被实现,只是抛了一个异常,这是否意味着我们在使用的时候需要自己实现一个AnimableValue类,由于这种动画并不是需要重点关注的,暂时不往下继续了。
2.VertexAnimationTrack :顶点动画:
enum VertexAnimationType // 顶点动画类型
{
VAT_NONE = 0, // 没有动画
VAT_MORPH = 1, // 形变动画
VAT_POSE = 2 // 姿态动画
};
顶点的轨迹可能有两种产生方式,所以在播放的时候也有两种方式:
void VertexAnimationTrack::applyToVertexData(VertexData* data,
const TimeIndex& timeIndex, Real weight, const PoseList* poseList)
{
// Nothing to do if no keyframes or no vertex data
if (mKeyFrames.empty() || !data)
return;
// Get keyframes
KeyFrame *kf1, *kf2;
Real t = getKeyFramesAtTime(timeIndex, &kf1, &kf2);
if (mAnimationType == VAT_MORPH)
{
VertexMorphKeyFrame* vkf1 = static_cast<VertexMorphKeyFrame*>(kf1);
VertexMorphKeyFrame* vkf2 = static_cast<VertexMorphKeyFrame*>(kf2);
if (mTargetMode == TM_HARDWARE)
{
// If target mode is hardware, need to bind our 2 keyframe buffers,
// one to main pos, one to morph target texcoord
assert(!data->hwAnimationDataList.empty() &&
"Haven't set up hardware vertex animation elements!");
// no use for TempBlendedBufferInfo here btw
// NB we assume that position buffer is unshared, except for normals
// VertexDeclaration::getAutoOrganisedDeclaration should see to that
const VertexElement* posElem =
data->vertexDeclaration->findElementBySemantic(VES_POSITION);
// Set keyframe1 data as original position
data->vertexBufferBinding->setBinding(
posElem->getSource(), vkf1->getVertexBuffer());
// Set keyframe2 data as derived
data->vertexBufferBinding->setBinding(
data->hwAnimationDataList[0].targetBufferIndex,
vkf2->getVertexBuffer());
// save T for use later
data->hwAnimationDataList[0].parametric = t;
}
else
{
// If target mode is software, need to software interpolate each vertex
Mesh::softwareVertexMorph(
t, vkf1->getVertexBuffer(), vkf2->getVertexBuffer(), data);
}
}
else
{
// Pose
VertexPoseKeyFrame* vkf1 = static_cast<VertexPoseKeyFrame*>(kf1);
VertexPoseKeyFrame* vkf2 = static_cast<VertexPoseKeyFrame*>(kf2);
// For each pose reference in key 1, we need to locate the entry in
// key 2 and interpolate the influence
const VertexPoseKeyFrame::PoseRefList& poseList1 = vkf1->getPoseReferences();
const VertexPoseKeyFrame::PoseRefList& poseList2 = vkf2->getPoseReferences();
for (VertexPoseKeyFrame::PoseRefList::const_iterator p1 = poseList1.begin();
p1 != poseList1.end(); ++p1)
{
Real startInfluence = p1->influence;
Real endInfluence = 0;
// Search for entry in keyframe 2 list (if not there, will be 0)
for (VertexPoseKeyFrame::PoseRefList::const_iterator p2 = poseList2.begin();
p2 != poseList2.end(); ++p2)
{
if (p1->poseIndex == p2->poseIndex)
{
endInfluence = p2->influence;
break;
}
}
// Interpolate influence
Real influence = startInfluence + t*(endInfluence - startInfluence);
// Scale by animation weight
influence = weight * influence;
// Get pose
assert (p1->poseIndex < poseList->size());
Pose* pose = (*poseList)[p1->poseIndex];
// apply
applyPoseToVertexData(pose, data, influence);
}
// Now deal with any poses in key 2 which are not in key 1
for (VertexPoseKeyFrame::PoseRefList::const_iterator p2 = poseList2.begin();
p2 != poseList2.end(); ++p2)
{
bool found = false;
for (VertexPoseKeyFrame::PoseRefList::const_iterator p1 = poseList1.begin();
p1 != poseList1.end(); ++p1)
{
if (p1->poseIndex == p2->poseIndex)
{
found = true;
break;
}
}
if (!found)
{
// Need to apply this pose too, scaled from 0 start
Real influence = t * p2->influence;
// Scale by animation weight
influence = weight * influence;
// Get pose
assert (p2->poseIndex <= poseList->size());
const Pose* pose = (*poseList)[p2->poseIndex];
// apply
applyPoseToVertexData(pose, data, influence);
}
} // key 2 iteration
} // morph or pose animation
}
3.NodeAnimationTrack :
void NodeAnimationTrack::applyToNode(Node* node, const TimeIndex& timeIndex, Real weight,
Real scl)
{
// Nothing to do if no keyframes or zero weight or no node
if (mKeyFrames.empty() || !weight || !node)
return;
TransformKeyFrame kf(0, timeIndex.getTimePos());
getInterpolatedKeyFrame(timeIndex, &kf);
// add to existing. Weights are not relative, but treated as absolute multipliers for the animation
Vector3 translate = kf.getTranslate() * weight * scl;
node->translate(translate);
// interpolate between no-rotation and full rotation, to point 'weight', so 0 = no rotate, 1 = full
Quaternion rotate;
Animation::RotationInterpolationMode rim =
mParent->getRotationInterpolationMode();
if (rim == Animation::RIM_LINEAR)
{
rotate = Quaternion::nlerp(weight, Quaternion::IDENTITY, kf.getRotation(), mUseShortestRotationPath);
}
else //if (rim == Animation::RIM_SPHERICAL)
{
rotate = Quaternion::Slerp(weight, Quaternion::IDENTITY, kf.getRotation(), mUseShortestRotationPath);
}
node->rotate(rotate);
Vector3 scale = kf.getScale();
// Not sure how to modify scale for cumulative anims... leave it alone
//scale = ((Vector3::UNIT_SCALE - kf.getScale()) * weight) + Vector3::UNIT_SCALE;
if (scale != Vector3::UNIT_SCALE)
{
if (scl != 1.0f)
scale = Vector3::UNIT_SCALE + (scale - Vector3::UNIT_SCALE) * scl;
else if (weight != 1.0f)
scale = Vector3::UNIT_SCALE + (scale - Vector3::UNIT_SCALE) * weight;
}
node->scale(scale);
}
KeyFrame :KeyFrame 的内容比较简单,所有关键的东西都在Track里面处理了
NumericKeyFrame // KeyFrame
TransformKeyFrame // KeyFrame
VertexMorphKeyFrame // 形变动画的KeyFrame
VertexPoseKeyFrame // 姿态动画的KeyFrame
总结:对于整个ogre的动画体系来说,Animation 是动画的管理类,而AnimationState 是动画状态的控制类。Animation 的动画播放其实是调用其相应的track类来播放的,KeyFrame 更多的是起到数据单元的作用。所以,完全弄清楚四种动画的底层实现,重点需要关注的是track类,这里没有写多少因为我自己也不太清楚,后面在写例子的时候,再从使用者的角度详细描述一下ogre的动画的底部执行过程。
三 SceneManager 对动画的管理及播放:
1.动画对象的管理:
在SceneManager里面使用Animation时会把Animation保存在mAnimationsList里面,AnimationState保存在mAnimationStates里面,他们通过animName来保持一一对应。生命周期:Animation创建-->AnimationState创建-->AnimationState销毁-->Animation销毁。如果不是按照这种顺序会报异常。
2.动画播放:
遍历所有Enabled为true的动画状态,调用node的resetToInitialState()和AnimableValue的resetToBaseValue()方法,分辨对节点动画和数组动画进行reset,最后调用Animation的apply方法进行播放动画。